
SmartSpace®
Location Simulation
From version 3.6

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: https://www.ubisense.com

https://www.ubisense.com/


Copyright © 2023, Ubisense Limited 2014 - 2023. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from Ubisense
at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.com

All contents of this document are subject to change without notice and do not represent
a commitment on the part of Ubisense. Reasonable effort is made to ensure the accuracy
of the information contained in the document. However, due to on-going product
improvements and revisions, Ubisense and its subsidiaries do not warrant the accuracy of
this information and cannot accept responsibility for errors or omissions that may be
contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AngleID® are registered trademarks
of Ubisense Ltd. DIMENSION4™ and UB-Tag™ are trademarks of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/


Page i

Contents

Location simulation 1

Installing Location simulation 2

Requirements 2

Installation 2

Install the Location simulation feature 2

Load the simulation example module 2

User data model 3

Location simulation types 3

Properties 3

Assertions 4

Location simulation parameters 6

Location Cell Parameters 6

Simulation Behavior Parameters 7

Simulation Lifecycle Parameters 9

First Steps with Location simulation 12

Moving a simulated object to another object 12

Controlling the behavior of a simulated object 15

Moving a simulated object along a path 17

Creating multiple simulated objects 19

Random targets and random routing 24

Random target selection 24

Random path selection 27

Simulation example with Business rules 29

Data model 29

‘Simulation’ type 29

Properties 29

Business rules 29

Update simulation properties 29



Page ii

Check for new objects 30

Check for waypoint instructions 31

Remove expired instructions 31

Configuration 32

Create objects 32

Configure service parameters 32

Create a route 33

Add behaviors 33



Location simulation

Location simulation
With Location simulation you can use objects and paths located on the map as simulation targets
to which other objects are moved when a simulation is run. The simulator can move pre-existing
objects from your dataset or can use a Simulation Lifecycle to create and move one or more
simulated objects of the same type. Unlike pre-existing objects, simulated objects exist only for
duration of the simulation, are created when the lifecycle is activated and are automatically
removed on deactivation.

During a simulation, how moving objects behave, for example their speed and how the simulator
injects their locations, is determined by the parameters of the their Simulation Behaviour.

There are three simulation modes that determine how the simulator injects locations:

drive objects directly

In drive objects directly mode, the simulator injects locations for an object that has a target.

drive tags only

In drive tags only mode, the simulator injects locations for the tag attached to the object,
and another (non-simulation) Ubisense service moves the object.

drive tags and counterpart

In drive tags and counterpart mode, the simulator injects locations for the tag attached to
the object and also creates an extra counterpart object that is used to give a visual
indication (a transparent rep on the map) of what the simulator is doing under the hood.
This is because tag locations have noise added and location rules might make the object be
nowhere near the simulated position. Generally, the counterpart will be very near the
simulated object, but they are not the same thing. The counterpart object doesn’t exist in
the other simulation modes.

With the use of Business rules, complex rules and behaviors can be built to model real-world
processes within the SmartSpace 3D virtual environment.

This guide describes the requirements and installation for Location simulation; the parts of the
user data model relating to Location simulation; and takes you through from the simplest steps in
creating simulations to building examples with the use of Business rules.

1



Installing Location simulation

Installing Location simulation
Location simulation was introduced in SmartSpace 3.6.

Requirements
Location simulation requires the following features to be licensed and installed:

l Location simulation

l Paths and queues

l Rules engine developer

If you want to use the example rules, you must also load and publish the simulation example
module (simulation_example_generic_module.xml).

Installation

Install the Location simulation feature

To install Location simulation:

Make sure that the SmartSpace platform includes a license for the Location simulation feature
and install it using Service Manager.

For further information on all aspects of installation, see SmartSpace Installation.

Load the simulation example module

To make use of the simulation example module:

Download ubisense_simulation_example.ssc from the Ubisense Downloads Portal.

In SmartSpace Config:

1. Open BUSINESS RULES and click Load.

2. At Load file, browse to ubisense_simulation_example.ssc and load the required items.

3. Publish the loaded rules so that they are now active in your dataset.

For further information on loading and publishing modules, see Module import and export on the
the Ubisense Documentation Portal.

2

https://download.ubisense.net/
../../../../../../Content/ITResources/ITDocs/BusinessRulesExport/business-rules-export.htm


User data model

User data model
The following types, properties and assertions relate to Location simulation. Examples of their
configuration and use are introduced in First Steps with Location simulation and an example using
business rules is given in Simulation example with Business rules.

Location simulation types
Simulation Control

This is a parent type to group the simulation control types in SmartSpace Config. Do not create
instances of this directly.

Simulation Behaviour

A named simulation behavior has a set of service parameters that define how objects behave in
simulation. Behaviors are applied to objects using a simple property.

Simulation Lifecycle

A named simulation lifecycle has a set of service parameters that define a set of objects to be
created while the lifecycle is active. The objects can be given tags automatically, and they are
cleaned up when the lifecycle becomes inactive.

Simulation Target Group

A simulation target group is used to make random routing decisions. You make assertions about
which objects are members of the group, such that a group contains a set of potential simulation
targets. When an object targets the group itself, the simulator chooses one of the group members
at random and changes the simulation target property accordingly.

Counterpart

A counterpart is an object given a name and representation by the simulator, and located at the
ideal position calculated by the simulator. It is a visual guide to the internal simulator state, so will
normally have a higher rate than simulated tag locations. The counterpart type itself is not user-
visible.

Properties
All objects get these following simulation properties, which tell the simulator where to move the
object. These properties can be set by business rules. Only the target is required to make an
object move; the behavior has default values defined by service parameters.

3



User data model

simulation behaviour <Object> : <Simulation Behaviour>

When the object is moving to a target, the behavior defines how it moves, via its service
parameters. If the behavior property is not set, the object uses the default service parameter
values.

simulation target <Object> : <Object>

When there is a simulation target, the object moves to it. If the target doesn’t have a location, the
simulator won’t move the object. There are two kinds of target: path points, and any other type of
object.

Path point targets

If the target is a path point, the object takes the shortest route to the path, then moves
along the path towards the target. If the object is not initially located, or is in a different
location cell, it jumps immediately to the beginning of the path, before moving along the
path to the target.

Non-path point targets

If the target is not a path point, the object moves in a straight line to its location. If the
object is not initially located, or is in a different location cell, it jumps immediately to the
target.

Target spaces

To roam around an area, you can configure the behavior to target the extent of one of the
target’s spaces, instead of its location. For path points, the object follows the path to the
path point first, then goes to the extent of the space. Once inside the extent of the space,
the object moves straight to a new random point in the space. When it reaches the random
point, it chooses a new one and repeats the process.

Assertions
<Object> reached waypoint <Object> : Bool

This is useful for making business rules that set simulation targets. The simulator makes this
assertion as soon as an object reaches its target. Once inside a target space, the simulator makes
the assertion when the object reaches the next random point. The assertion is removed after 2
seconds. If the target remains set, the assertion is made repeatedly, no more than once per
second.

<Object> has counterpart <Counterpart> : Bool

4



User data model

This assertion, and the ‘Counterpart’ type, are implementation details not visible to the user.
However, the counterpart objects themselves are visible, because they are given a name,
representation, and location on the map. The simulator makes the assertion while simulating in
‘drive tags and counterpart’ mode, and ensures the counterpart is visible on the map with a name
similar to “simulation counterpart of X” and a transparent version of the original representation.
Counterparts are automatically removed when they are no longer being simulated.

<Lifecycle> manages <Object> number <Int> : Bool

This is a non-user-visible implementation detail. The simulator makes this assertion as it creates
the objects for an active lifecycle, and retracts it as it deletes the objects for an inactive lifecycle.

<Lifecycle> is active : Bool

You make this assertion to create objects as defined by the service parameters for the lifecycle.
When you retract the assertion, the objects will be deleted by the simulator, using the delete
pending flag. You cannot delete the managed objects if the lifecycle is active, as the simulator will
bring them back.

<Simulation Target Group> has member <Object> : Bool

You make this assertion to configure which objects are members of the target groups.

5



Location simulation parameters

Location simulation parameters

You edit parameters in SmartSpace Config in the SERVICE PARAMETERS task. Choose Location
simulation from <select a configuration> to display the location quality monitor parameters
described below.

Location Cell Parameters
In SERVICE PARAMETERS, choose Location simulation and drag Location Cell into the workspace
to work with location cell parameters for simulations. Parameters can be set globally or for a
selected location cell by dragging either 'Location Cell' objects or the required location cell from
the dialog:

batch size : UInt

The simulator injects events into the location cell with a maximum number of events per
transaction, defined by the batch size. You don’t need to change this unless locations are being
dropped unexpectedly.

For larger simulations, you might need to increase the 'batch size' service parameter.

minimum period : Time Span

The time between simulation executions for each location cell is defined by the minimum period.
You don’t need to change this unless the simulator is unable to keep up, in which case you can
increase the value to stop the simulator using too much CPU, in order to investigate the problem.

6



Location simulation parameters

Simulation Behavior Parameters
In SERVICE PARAMETERS, choose Location simulation and drag Simulation Behaviour into the
workspace to define simulation behaviors. Parameters can be set globally or for a selected
behavior by dragging either 'Simulation Behaviour' objects or the required behavior from the
dialog:

acceleration period : Time Span

This is the period of time taken for objects to change speed. Normally, you don’t need to change
it, but you can increase the value as a simple tool to smooth simulated movements.

choose unique target : Bool

7



Location simulation parameters

This applies when targeting a group, where the simulator chooses a random member of the
group. When false, all members of the group are candidates. When true, any members that are
already targeted by another object will not be considered. If this means there are no available
candidates, the simulation target remains unchanged until one of the members of the group
becomes available.

counterpart rate (Hz) : Double

This is the rate at which locations will be injected for counterpart objects. It is useful to have this
higher than the object rate so you get a better understanding of the internal state of the
simulator at all times.

object rate (Hz) : Double

This is the rate at which locations will be injected for the object (or its tag). If the rate is zero, the
simulator won’t move the object. If the simulator can’t keep up because there are not enough
CPU resources, the actual rate might be lower, but object speed in m/s will still be respected.

simulation mode : Choice

One of ‘drive objects directly’, ‘drive tags only’ or ‘drive tags and counterpart’.

For larger simulations, you might need to turn off counterparts and use one of the other modes.

speed (m/s) : Double

When both object and target are located in the same cell, the object moves at this speed until it
reaches the target. If the speed is zero, locations will still be injected, keeping the object
stationary.

tag error - horizontal (m) : Double

This is the standard deviation of the horizontal tag error, applied when the simulator is driving
the object’s tag (as opposed to driving the object directly).

For example, to make 95% of tag events fall within 1 m (measured horizontally) of the ideal
location, set the value to 0.5 m .

tag error - vertical (m) : Double

This is the standard deviation of the vertical tag error, applied when the simulator is driving the
object’s tag (as opposed to driving the object directly).

For example, to make 95% of tag events fall within 1 m (measured vertically) of the ideal location,
set the value to 0.5 m .

target space : String

8



Location simulation parameters

When this matches the name of a space owned by the current target, the object will move to that
space. When an object reaches a space, it will bounce around randomly within the extent. The
string needs to match exactly the name of the property as it appears in SmartSpace Config. For a
type T with spatial property ‘extent’, you can use “extent”, “extent of ‘T’” or “the extent of ‘T’”.
When there is no match, the object moves to the target location as usual.

target space z offset : Double

When targeting a space, the object moves at this offset from the bottom of the space. Set the
value to be greater than 0 to go higher within the extent.

timeout lower limit : Time Span

If the timeout is non-zero, this behavior will be removed automatically from objects. This is the
lower limit on the timeout, so if it is less than the upper limit, the behavior will be removed after a
random delay in between the limits. Since the simulation behavior is an object property, this
timeout can invoke business rules.

timeout upper limit : Time Span

If the timeout is non-zero, this behavior will be removed automatically from objects. This is the
upper limit on the timeout, so if it is greater than the lower limit, the behavior will be removed
after a random delay in between the limits. Since the simulation behavior is an object property,
this timeout can invoke business rules.

use target orientation : Bool

The default behavior is for objects to move facing forwards. This is always the case when moving
to a path or target space. When moving to the target location itself, directly or along a path, you
can use this parameter to control the object rotation. When true, the object will rotate steadily
such that it matches the orientation of the target object when it reaches the target.

Simulation Lifecycle Parameters
In SERVICE PARAMETERS, choose Location simulation and drag Simulation Lifecycle into the
workspace to define simulation lifecycles. Parameters can be set globally or for a selected lifecycle
by dragging either 'Simulation Lifecycle' objects or the required lifecycle from the dialog:

9



Location simulation parameters

initial behaviour : Simulation Behaviour

When the lifecycle first creates an object, it assigns this behavior to it. Since the simulation
behavior is an object property, business rules can infer that objects have been created using this
behavior.

name prefix : String

The name prefix to use for the created objects. Names are maintained by the simulator while the
lifecycle is active, so you can change this and the names will be updated.

name suffix : String

The name suffix to use for the created objects. Names are maintained by the simulator while the
lifecycle is active, so you can change this and the names will be updated.

object count : Int

The number of objects to create while the lifecycle is active. The set of objects is maintained by
the simulator while the lifecycle is active, so you can change this and objects will be created or
deleted as required.

object type : Type

10



Location simulation parameters

The type of object created by the behavior. If you change this while the lifecycle is active, all the
objects will be deleted and replaced with new objects of the new type.

tag position : String

The named tag position to use when fixing tags to new objects. The tag position must apply to the
type of object being created.

tag prefix : String

If the initial behavior has simulation mode “drive object directly”, this is ignored. Otherwise, when
the lifecycle first creates an object, it uses an available tag with this 4-byte prefix. For example, set
the value to “99:99:99:99” to use tags starting with 99:99:99:99:00:00:00:01. Tags are not
maintained by the simulator beyond the initial assignment because you might want to use
automatic tag association and disassociation. Tag locations for unattached tags that match the
prefix of any lifecycle are cleaned up by the simulator.

11



First Steps with Location simulation

First Steps with Location simulation
This section takes you through the basics of configuring different elements of Location simulation
in SmartSpace Config. We use an example of moving cars around the map. Each of the steps is
simple, but in combination and used with Business rules, complex simulations can be
constructed. See Simulation example with Business rules for example business rules and their
implementation.

If you choose to work through these examples yourself, note that they all use the drive objects
directly simulation mode.

Note: You may find the examples easier to work through in SmartSpace Config if you use the
Floating windows option to enable the display of multiple tabs, for example both TYPES /
OBJECTS to view and configure objects and OBJECT PLACEMENT to display their locations.

Moving a simulated object to another object
We start with a single object—a car—located on the map. By setting the simulation target
property, a simulation of the car moves to a another object.

1. We create the types we will use to represent the car and its destination. In SmartSpace
Config, choose TYPES / OBJECTS and double-click <Create new type>. In the dialog enter
the type name “Vehicle” and choose Object from the list of parents. Enter “name” as the
unique identification property. Click Save.

2. Repeat to create a type called “Destination”.

3. Import and assign representation models for these two types. See Model import and Model
assignment for how to set a representation on a type in SmartSpace Config.

4. Create an instance of the Vehicle type, named “Car 1”. Then create some destinations,
“Target 1” and “Target 2”:

12

troubleshooting.htm#How
../../../../../../Content/UserResources/BuildandCreate/SiteVisualization/model-import.htm
../../../../../../Content/UserResources/BuildandCreate/SiteVisualization/assignreps/model-assignment.htm
../../../../../../Content/UserResources/BuildandCreate/SiteVisualization/assignreps/model-assignment.htm


First Steps with Location simulation

5. We set the target for the car. In TYPES / OBJECTS, we drag the Vehicle type from the TYPE
list into the workspace and double-click Car 1. Click Edit and at simulation target select
Target 1. Click Save.

13



First Steps with Location simulation

We should now see a simulation of the car on the map in OBJECT PLACEMENT located at
Target 1:

6. In TYPES / OBJECTS, we drag out <Object> reached waypoint <Object> from the
COMPLEX PROPERTY list to see that the simulator has asserted that Car 1 has reached
Target 1:

See <Object> reached waypoint <Object> : Bool for a fuller description of this assertion.

7. We can move the simulation of Car 1 by editing its target. For example, by changing the
simulation target to Target 2, we see the simulation move across the map from Target 1 to
Target 2:

14



First Steps with Location simulation

8. Before we can manually move an object that has undergone simulation, or remove it from
the map, we must unset the simulation target. In TYPES / OBJECTS, we select the object
type, drag out simulation target and delete the relevant row.

For the moment, we leave the Car 1 where it is.

Controlling the behavior of a simulated object
How a simulated object behaves on its journey to its target is controlled by the parameters of the
Simulation Behaviour object associated with the object. By default a simulation uses the settings
described in Simulation Behavior Parameters. But what happens if we would like the simulation to
behave differently, for example if we wanted the car in the previous simulation to move faster?

1. We create a Simulation Behaviour. In SmartSpace Config. Choose TYPES / OBJECTS and
drag the Simulation Behaviour type from the TYPE list into the workspace. Double-click
<Create new object> and enter the type name “Fast Car” at [external name]. Click Save.

2. Now we can define parameters for this simulation behavior. In SERVICE PARAMETERS,
choose Location simulation and then double-click Simulation Behaviour or drag it into the
object browser. Double-click Fast Car to display its parameters. Click Edit in the parameters
dialog, edit the speed to be 10 m/s and click Save:

15



First Steps with Location simulation

3. We go back to TYPES / OBJECTS and set the destination and the simulation behavior for
Car 1:

16



First Steps with Location simulation

4. Click Save and we should see Car 1 move back to its destination Target 1 much faster than
before.

Moving a simulated object along a path
A useful way to control the movement of simulated objects is to use the Paths and queues feature
to create routes for objects to follow. We now take the car on a short journey along a path. (If you
need more information on creating paths, see Paths and queues configuration.)

1. In SmartSpace Config, we use the PATHS tab to create a path called “Simulation Path” with
a number of path points along it:

17



First Steps with Location simulation

2. Now in TYPES / OBJECTS we need to make the simulation target one of the path points
along the path. We want the car to travel to the end of the path, so we enter “spp024”, the
final path point for this path. Again, we can watch the car's progress in the map in
OBJECT PLACEMENT:

We still had the object located at Target 1 (from the previous example), so the simulated
car moved to the nearest part of the path and then traveled to the end. If we had removed

18



First Steps with Location simulation

the simulated car (by deleting its simulation target), it would first have moved to the
beginning of the path and then traveled its entire length. If we had already placed the car
on the path, it would have traveled from that initial position to the target path point at the
end of the path. See simulation target <Object> : <Object> for further discussion of types of
target.

Again, if we want to manually move Car 1, or remove it from the map, we must unset its
simulation target.

Creating multiple simulated objects
In many cases, you will want to simulate many identical objects and their behaviors. Location
simulation provides a means of creating batches of simulated objects that exist only for the
duration of a simulation—and can be used again and again. To do this, we create a simulation
lifecycle and define its parameters.

1. We first define a type on which to base the simulated objects. In TYPES / OBJECTS, double-
click <Create new type>. Give the object type a name and then select Simulation Control as
its parent. The new type will be shown under Simulation Control in the list of types.

19



First Steps with Location simulation

We must remember to give the type a representation. Otherwise we will not see it on the
map!

2. We create a lifecycle for the type, by dragging Simulation Lifecycle into the object browser
and double-clicking <Create new object>. Give the lifecycle a name and save it:

20



First Steps with Location simulation

3. To link the lifecycle to the simulation type, we go to SERVICE PARAMETERS, open the
<Select a configuration> dropdown and choose Location simulation. Drag Simulation
Lifecycle out into the object browser and then drag out the lifecycle created in TYPES /
OBJECTS. Click Edit and we can set the number of simulated objects to be created, a prefix
for the names of the objects, and the object type:

Here we enter the number object we want to create—20—and the name of the object type
we want the simulated objects to be based on, here the Simulated Car we just created. We

21



First Steps with Location simulation

specify the name prefix “Car” and so the simulator will create objects called Car01, Car02...
Car20.

Click Save to save the details.

4. In TYPES / OBJECTS, we select Simulation Lifecycle in the list of types and drag out the
<Lifecycle> is active property. Then double-click <Create new property row>:

We select the lifecycle we created and click Save.

5. We drag out the Simulated Car object and we can see a list of new simulated objects. Drag
out the <Object> reached waypoint <Object> from the COMPLEX PROPERTY list,
however, and there will be no assertions relating to these objects:

22



First Steps with Location simulation

6. We drag one (or more) of the objects out from the list and give them a target, for example a
path point along the path we created earlier. Click Save and in OBJECT PLACEMENT, we
should see the object(s) move along the path. Assertions are made by the simulator as the
objects reach their target:

7. When we have finished with the simulated cars, we remove all the objects created by the
simulator by changing the <Lifecycle> is active property to false:

23



First Steps with Location simulation

All the objects created by this simulation lifecycle, and their representations, are removed
by the simulator.

Random targets and random routing
Now we have created a batch of objects, we can make them go to more than one location, by
creating a Simulation Batch Target. Simulation Batch Targets can be objects or paths as required
by a simulation.

Random target selection

Here we will send simulated cars to different targets, with the simulator randomly selecting the
target for each car. By default, the simulator will select from all targets for every object, so more
than one object could end up arriving at the same target. Whilst this would be acceptable if we
were modeling small items that were being added to a hopper, we don't want more than one car
to occupy the same space, so we will create a behavior that prevents this.

1. We begin by creating a Simulation Batch Target. This is a type with which we will associate
all the targets the simulator can choose between. In TYPES / OBJECTS and drag the
Simulation Batch Target type from the TYPE list into the workspace. Double-click
<Create new object> and enter the type name “Vehicle Spaces” at [external name]. Click
Save.

2. We add targets to this object by adding a row for every one we want to include. In TYPES /
OBJECTS, drag out <Simulation Target Group> has member <Object> from the
COMPLEX PROPERTY list and double-click <Create new property row>:

24



First Steps with Location simulation

Select Vehicle Spaces for the Simulation Target Group and then the Destination type and
the Target 1 object. Click Save.

3. We add further rows for the other targets we want to include:

We also make sure all these targets have been placed on the map.

25



First Steps with Location simulation

4. Now we create the behavior that will prevent more than one car arriving at any one target.
We do this by modifying the “Fast Cars” Simulation Behaviour we created previously. In
SERVICE PARAMETERS, we choose Location simulation and then double-clickSimulation
Behaviour or drag it into the object browser. Double-click Fast Car to display its
parameters. Click Edit in the parameters dialog and at choose unique target select true.
Click Save.

5. We tell the simulator to create the cars by adding a property row to the <Lifecycle> is
active property (as described above).

6. We display the list of simulated objects, select a number of them, and drag them out to
add the required target group and behavior:

Note: We have selected more objects than there are targets.

7. We drag out the, currently empty, <Object> reached waypoint <Object> list.

8. When we save the details for the simulated cars, we can view the results in the
OBJECT PLACEMENT and see the simulator make assertions about objects’ locations as
they are placed on the map:

26



First Steps with Location simulation

Only four of the simulated objects are displayed, each in one of the available targets. If we
run the simulation again, by deactivating it and then repeating steps 5 to 8, a different
result will occur.

Random path selection

Simulation Targets Groups can also be configured to use paths. When creating the rows in
<Simulation Target Group> has member <Object>, instead of specifying objects we add path
points. When run, the simulated objects will be allocated a random path point from the group and
will move to it obeying the rules described in Path point targets.

For example, we create three paths, and generate path points along their routes. We want our
objects to follow the entire length of the paths, so we make the final path point on each of the
paths a member of the target group:

27



First Steps with Location simulation

28



Simulation example with Business rules

Simulation example with Business rules
The previous section showed you the simple principles behind creating simulations. All the
examples required you to manually set and change properties. Using business rules you can
automate these activities, for example creating rules that move objects through a succession of
targets, and add refinements, such as using spaces and containments to prevent collisions.

The following section introduce the business rules contained in simulation_example_generic_
module.xml and highlights key elements of their design. See Load the simulation example module
for information on installing this module.

Data model

‘Simulation’ type

A ‘Simulation’ type lets you create named simulations that can be switched on or off, and you can
use complex properties to attach simulation semantics to application objects while keeping a clear
separation between simulation and application logic.

Properties

To keep simulation logic separate from application logic, use the ‘Simulation’ type in properties
and assertions that involve application objects. Example properties include:

l <Simulation> is active : Bool

l <Simulation> prevents collisions : Bool

l the waypoint after <Object> in <Simulation> : Object

l <Object> imparts <Simulation Behaviour> in <Simulation> : Bool

l <Object> acquired <Simulation Behaviour> from <Object> in <Simulation> : Bool

l the priority of <Simulation Behaviour> : Int

Business rules

Update simulation properties

“Update simulation properties” is the main rule in the example. It demonstrates how Simulation
Behaviours can be prioritized with the use of the priority property. (This property is added to the

29



Simulation example with Business rules

Simulation Type when the example module is installed.)

Check for new objects

“Check for new objects “ demonstrates the correct way to detect that a lifecycle has created an
object by ensuring its simulation behavior becomes non-null when its simulation target is null.

30



Simulation example with Business rules

Check for waypoint instructions

This rule shows how waypoints can be configured to impart instructions in order that complex
routes can be constructed.

Remove expired instructions

This rule demonstrates the behavior timeout feature.

31



Simulation example with Business rules

Configuration
If you import the example data model, you need to configure it for your requirements.

Create objects

Create a named ‘Simulation’ and a ‘Simulation Lifecycle’.

You also need to create Simulation Behaviours, for example to define “roaming”, “paused” and
“moving”.

Configure service parameters

Set suitable values for the example ‘Simulation Behaviour’ objects, and configure your ‘Simulation
Lifecycle’ to create the desired objects.

For example, if you have created the “roaming”, “paused” and “moving” Simulation Behaviours,
you could configure them as follows:

32



Simulation example with Business rules

Simulation Behaviour Service Parameters

roaming Set the target to be a space and use a time out to configure how
long the object will “bounce around” within this space.

paused Set the speed to 0. You could also set a timeout to define how
long the object is paused.

moving Set the speed to be a value greater than 0.

Create a route

Add rows for ‘the waypoint after <Object> in <Simulation>’ to define the route objects will take
in the simulation. For the first waypoint, use the ‘Simulation’ object itself as the predecessor, so
the example rule “Check for new objects” can find the first instruction.

Add behaviors

Add rows for ‘<Object> imparts <Simulation Behaviour> in <Simulation>’ for the waypoints. You
can combine “moving” and “roaming” behaviours to make objects roam until that behaviour times
out, and then move to the next waypoint.

33


	Location simulation
	Installing Location simulation
	Requirements
	Installation
	Install the Location simulation feature
	Load the simulation example module


	User data model
	Location simulation types
	Properties
	Assertions

	Location simulation parameters
	Location Cell Parameters
	Simulation Behavior Parameters
	Simulation Lifecycle Parameters

	First Steps with Location simulation
	Moving a simulated object to another object
	Controlling the behavior of a simulated object
	Moving a simulated object along a path
	Creating multiple simulated objects
	Random targets and random routing
	Random target selection
	Random path selection


	Simulation example with Business rules
	Data model
	‘Simulation’ type
	Properties

	Business rules
	Update simulation properties
	Check for new objects
	Check for waypoint instructions
	Remove expired instructions

	Configuration
	Create objects
	Configure service parameters
	Create a route
	Add behaviors



