
SmartSpace®
Web Source Injector Users’
Guide for AVL/GPS Connect
Introduced in version 3.2 and deprecated from version
3.9

1



Copyright © 2023, Ubisense Limited 2014 - 2023. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from Ubisense
at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.com

All contents of this document are subject to change without notice and do not represent
a commitment on the part of Ubisense. Reasonable effort is made to ensure the accuracy
of the information contained in the document. However, due to on-going product
improvements and revisions, Ubisense and its subsidiaries do not warrant the accuracy of
this information and cannot accept responsibility for errors or omissions that may be
contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AngleID® are registered trademarks
of Ubisense Ltd. DIMENSION4™ and UB-Tag™ are trademarks of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/


Page i

Contents

Web Source Injector 1

Introduction to Web Source Injector 2

Supported formats 3

JSON 3

XML 3

CSV 3

SQL 4

Configuration Parameters for Web Source Injector 5

Web source parameters 5

Connection parameters 5

Data field labels 6

Object/tag parameters 7

Transformation parameters 8

Filtering and miscellaneous parameters 9

Global Parameters 10

GPS References 11

Field Path Syntax 13

Web Source Injector Example 16

Example Web Data 17

Example Configuration for the Web Source Injector 18

Creating the web sources 18

Configuring the connection 19

Configuring the parsing 20

Additional configuration 21

Enabling the web source 21

Viewing locations 22

Glossary 24





Web Source Injector

Web Source Injector

This guide describes the Web Source Injector service for the AVL/GPS connect
feature introduced in SmartSpace version 3.2.
Web Source Injector will be deprecated from version 3.9 and its functions
completely replaced by the External data connector.
The instructions provided here are intended only for existing installations that
use Web Source Injector; all installations requiring new instances of connecting
web sources to the Ubisense platform should use the External data connector.

1



Introduction to Web Source Injector

Introduction to Web Source Injector
The web source injector is a service that periodically sends requests to web sources1 or location
information and injects these locations into the Ubisense location platform. The service supports
a range of formats and has various features that need to be configured prior to use. This process
is covered in detail in this document.

Ubisense AVL/GPS connect is available for Microsoft® Windows®.

1A URL or SQL database that responses to web requests with location data

2



Supported formats

Supported formats
The web source injector supports responsemessages1 in JSON, XML, CSV or SQL formats.

JSON
JSON messages can be either a JSON object or array containing one or more location objects2.
Each location object should be a JSON object containing members, named value/array pairs, for
the data fields3. You can configure which name/array index corresponds to which data field in
service parameters. (See Data field labels). The location objects can be the top level object/array
or nested within other JSON objects and each data field within those objects can be further nested
or contained within an array at a fixed index.

XML
XML messages can be either a single location object element or set of location object elements.
Each location object should be an element consisting of data fields as attributes or child elements
in the form <Tag>value</tag>, you can configure which attribute names/tags correspond to
which data field in service parameters (see Data field labels). The location objects can be
contained within the root element (or be the root element itself when in single object mode), or
be contained within some XML element at a greater depth. Each data field within those objects
can also be an indirect descendant or, when several elements at the same level have the same
name, can be identified fixed index.

CSV
CSV messages should be a rows of location objects where each row is separated by a new line and
each column is separated by some configurable delimiter. The CSV should start with a row of
column headings. You can define which column (in terms of heading) corresponds to which data
field in service parameters. (See Data field labels).

1A response from a web source that contains location data
2Data for an individual location as found in location messages
3A single data entry used in generating locations e.g. the x coordinate of the location

3



Supported formats

SQL
SQL queries should return rows of location objects. You can define which column (in terms of
names) corresponds to which data field in service parameters. (See Data field labels).

4



Configuration Parameters for Web Source Injector

Configuration Parameters for Web Source
Injector
The service is configured within SmartSpace Config by creating configuration objects in the Types
and objects workspace and then applying parameters to them using the Service
parameters workspace.

Web source parameters
Create a Web Location Source object for each source in the Types and objects workspace. Then
configure its parameters in the Service parameters workspace by choosing GPS and web location
sources andWeb Location Source and then dragging the object you created into the object
browser. The parameters you can configure are described in the following sections.

For an example of configuring a web source, seeWeb Source Injector Example.

Connection parameters

Parameter Description

enabled A web source must be enabled to be used.

source
address

The URL of the web source. For SQL sources this is the connection string.

source
format

The format type, i.e. XML, JSON, CSV or SQL

update
interval

The time to wait between sending requests to the web source.

root element
path

For XML or JSON sources. The path to the XML element/JSON object where the locations
objects are contained, defined using the field path syntax outlined in Field Path Syntax.
The top level element/object is assumed if this is not set.

5



Configuration Parameters for Web Source Injector

Parameter Description

single object
mode

Whether the element/object pointed to is a single locations object or a set/array of them.
Only relevant for XML and JSON sources.

DMS format
GPS

When true, latitude/longitude fields in the source data are assumed to be in degrees,
minutes, seconds format (as ddmmss.s). Otherwise decimal degrees format is assumed.

CSV
separator

The delimiter between fields, for CSV format sources.

SQL query The query to execute, for SQL format sources.

Data field labels

The following parameters define what data fields are in your source data. Any non-empty field
label will be looked for in the source data. A location object must contain all labeled fields else it
will be skipped. Define x, y and z for a Cartesian web source or define latitude, longitude and
(optionally) altitude for a GPS web source.

All field name parameters support the field path syntax, outlined in Field Path Syntax, for JSON or
XML sources.

Parameter Description

field name -
X

The X location field label.

field name -
Y

The Y location field label.

field name -
Z

The Z location field label.

field name -
latitude

The latitude field label.

field name -
longitude

The longitude field label.

6



Configuration Parameters for Web Source Injector

Parameter Description

field name -
altitude

The altitude field label. If absent, default altitude is used for GPS locations.

field name -
datetime

The datetime field label. If absent, current time of the service is used on injection.

field name -
jitter

The jitter field label. This data field is used to reset the median filter where a value of “1”
signifies a reset and “0” otherwise.

field name -
object name

The object name field label. Locations will be injected for objects with these names or
tags with those IDs depending on the object/tag configuration.

field name -
object type

The object type field label. Used with object field name to determine what object to
assign the location to, the type name should be in UDM format. Use when using dynamic
object injection, covered in the next section, when the data is for more than one type of
object. Use object type name instead when all objects are of a single type.

field name -
filter

The label for the filter field. When defined, this field’s value is checked against the filter
value. If the values do not match the location object is ignored.

filter value The filter value to use with field name - filter.

Object/tag parameters

These parameters are used to configure how the service determines which Ubisense object each
location object is for. The service supports several modes for object/tag assignment:

1. fixed tag injection, where all location objects are injected with a predefined, fixed Ubisense
tag;

2. dynamic tag injection, where tag IDs are parsed from the object name field and locations
are injected for those tags;

3. dynamic object injection, where the object the location is for is determined using the
object name field and locations are injected for those objects/the tags they are associated
with;

4. dynamic object injection with tag assignment, where the object is determined for the
object name field and a tag is automatically assigned to the object if required. Also allows
for automatically creating the object if it does not already exist.

7



Configuration Parameters for Web Source Injector

Parameter Description Modes

fixed tag id All locations are injected for this tag id. 1

tag id mask 64-bit mask to be bitwise OR-ed with tag IDs read from the source. 2

object type
name

The UDM type name of the object type. Use this or object type field name,
together with object name field name to use dynamic object injection.

3,4

create
missing
objects

When set, if no platform objects match the name/type of the location object,
a new platform objects will be created with this name. This option is only
supported when the object name property is unset.

Note: locations will not be injected when the object is first created, it will have
to wait for a subsequent location for that object.

4

tag range
minimum id

The minimum tag id to automatically assign to an object. 4

tag range
maximum id

The maximum tag id to automatically assign to an object. 4

enforce tag
range

When true, objects already associated with tags outside the dynamic range
will be assigned new tags within the range, when locations are injected for
those objects.

4

Transformation parameters

The service includes several parameters for transforming coordinates if your source coordinate
system is different from the Ubisense platform coordinate system.

8



Configuration Parameters for Web Source Injector

Parameter
Name Description

transform
offset x

The offset to add to the x coordinate after applying the rotation.

transform
offset y

The offset to add to the y coordinate after applying the rotation.

transform
offset z

The offset to add to the z coordinate after applying the rotation.

transform
yaw

The rotation, in degrees, about the z axis (i.e. of the xy plane) to rotate locations by. This is
the same as the angle from the x axis of the Ubisense coordinate system to the source
coordinate system.

transform
pitch

The rotation, in degrees, about the y axis (i.e. of the xz plane) to rotate locations by.

transform
roll

The rotation, in degrees, about the x axis (i.e. of the yz plane) to rotate locations by.

transform
left handed

Set to true when the source coordinate system uses left handed axis i.e. the y coordinate
needs to be negated to match the Ubisense coordinate system.

Filtering and miscellaneous parameters

The Web Source Injector has support for applying median filtering to your locations. Median
filtering will smooth the injected locations by storing a history of locations for each tag, local to
that web source. A median of the recent locations is stored and the injected location will be the
mean of the recent median locations. If your data supports it, you can also configure a jitter reset
as outlined above in Data field labels.

9



Configuration Parameters for Web Source Injector

Parameter Description

location GDOP The geometric dilution of precision of the locations injected by this source.

location standard
error

The standard error of the locations injected by this source.

use median filter Whether to use the median filter. Filter setting are configured in the global
parameters.

arbitration time Locations will not be injected if the platform has seen the tag within this time
(seconds).

Global Parameters
In addition to the web source parameters, there are parameters that apply to all sources the
service is running. Choose GPS and web location sources and Location Cell to view these
parameters (the service runs at the location cell level). When setting these parameters it is
recommended that you set them to the same value for all location cells using the <All objects of
type Location Cell> option.

Parameter
Name Description

Date format The format of DateTime fields in messages. The service can parse ISO 8601 conforming
formats automatically without needing to set this.

Default altitude The altitude to use for GPS locations when one is not specified in the data fields.

Inject with
current time

When true, locations will be injected with the current time regardless of the time from
data. Data time is still used for arbitration.

Median filter
length

The maximum number of locations stored by the median filter and used to generate
the median location.

10



Configuration Parameters for Web Source Injector

Parameter
Name Description

Mean filter
length

The maximum number of median locations to store and use to generate the final
filtered location.

Median filter
reset length

After a jitter reset, the number of locations to prune the median filter’s location store
to.

Report interval The interval between ws_status monitor messages.

Use local
timezone

If true, parsed times are assumed to be in the same time zone as the service, otherwise
UTC time is assumed.

GPS References
At least two GPS reference points are needed to convert GPS locations to the Cartesian
coordinates used by the platform. These coordinates are defined by creating GPS Reference Point
objects in the Types and objects workspace and then setting their x, y, latitude and longitude
values in the Service parameters workspace.

The service also provides several types of GPS spatial zones that are used to control how/where
the service injects locations, configured in a similar way to the reference points. These zones have
the following effects:

GPS Exclusion
Zone

Web source locations in this zone will be ignored and not injected.

GPS Inclusion
Zone

If at least one inclusion zone is defined, web source locations outside this zone will be
ignored and not injected.

GPS Removal
Zone

Removal events will be injected for web source locations in this zone.

GPS Non
Removal Zone

If at least one non-removal zone is defined, removal events will be injected for web
source locations outside this zone.

To configure these zones, create a GPS Zone object in the Types and objects workspace and then
in the Spatial properties workspace define a stationary shape for that object’s GPS Zone extent

11



Configuration Parameters for Web Source Injector

property. In Service parameters, choose GPS and web location sources and GPS Zone and
choose the object to set the type of zone it represents.

When zones overlap the following order of precedence is used; exclusion > removal > inclusion >
non-removal.

Note that if you are using a transformation, the Cartesian coordinates of any reference points
should be in the source coordinate system. Zones are applied post transformation and should be
defined in the Ubisense coordinate system regardless of transformation.

12



Field Path Syntax

Field Path Syntax
For XML/JSON sources, some configuration parameters use a field path syntax to allow the
definition of paths to elements/objects that are nested or within a set/array. If your location
objects are the root element/object of your source data and the data fields are direct descendants
of those objects you do not need to use this syntax, simply use the XML element/JSON object
names when defining you field names.

The field path syntax is a sequence of XML element/JSON object names, separated with a '.'
character, with the topmost element/object on the left. For example in the JSON message in
Figure 1: Example JSON message with nested name field, the name field would have the field path
syntax of “locationObject.name”.

{
"locationObject":
{

"name": "object1",
"x": 42,
"y": 13,
"z": 0

}
}

Figure 1: Example JSON message with nested name field

<?xml version="1.0" encoding="UTF-8"?>

<locationObject>

  <name>object1</name>

  <x>42</x>

  <y>13</y>

  <z>0</z>

</locationObject>

Figure 2: Example XML message with nested name field

13



Field Path Syntax

The syntax also supports paths to data at fixed indices in JSON arrays, or sets of XML elements
defined at the same level with the same name, using an index in square brackets indexing from 0.
For example, in the JSON message in Figure 3: Example JSON message with a data array, the
name field of object1 would have the field path syntax of “locationObjects[0].name”.

{
"locationObjects":
[{

"name": "object1",
"x": 42,
"y": 13,
"z": 0

},
{

"name": "object2",
"x": 8,
"y": 59,
"z": 0

}]
}

Figure 3: Example JSON message with a data array

<?xml version="1.0" encoding="UTF-8"?>

<locationObjects>

  <element>

    <name>object1</name>

    <x>42</x>

    <y>13</y>

    <z>0</z>

  </element>

  <element>

    <name>object2</name>

    <x>8</x>

    <y>59</y>

14



Field Path Syntax

    <z>0</z>

  </element>

</locationObjects>

Figure 4: Example XML message with a set of elements

15



Web Source Injector Example

Web Source Injector Example
The following walks you through an example of the configuration process for the Web Source
Injector. It will cover how to set up the Web Source Injector to retrieve JSON data from a website
and use it to inject tag locations.

16



Example Web Data

Example Web Data
In this example we’ll be using a web source that server JSON data to clients connecting to the URL http://example_site.com/object_
locations. The JSON data served has the following format:

{
"sourceName": "example source",
"locationObjects": [
{

"tagId": "0cb2b725c5f0",
"tagType": "type1",
"location": [
12.2,
6.6,
0.93

],
},
{

"tagId": "0cb2b725c5f2",
"tagType": "type2",
"location": [
23.6,
-12.3,
0.89

],
},

]
}

If you want to try out this example yourself without setting up your own web service, you can copy
this example data to a text file and point your web source at it using the file URI scheme instead.
For example, you could use the URI file:///C:/source_data.txt in place of the above URL, where the
path following the file:/// part is the path to your text file.

17



Example Configuration for the Web Source Injector

Example Configuration for the Web Source
Injector

Creating the web sources
The configuration process is performed within SmartSpace Config. Firstly we need to go to the
TYPES / OBJECTS tab and create some web source objects. You will need at least one web source
object for each source address, and generally only one per source address. We’ll be using a single
source, called ExampleSource.

In the TYPES / OBJECTS tab, drag theWeb Location Source type into the workspace and double-
click <Create new object>. Create a new web location source object and click Save.

(In the TYPES / OBJECTS tab you can also create and configure GPS Zones and GPS Reference
Points but we will not be needing them in this example.)

With the source created we can set up its properties in the SERVICE PARAMETERS tab.

18



Example Configuration for the Web Source Injector

Configuring the connection
Next we need to configure the parameters for this web source so it can retrieve the data from our
website. The parameters for our web sources can be found in the SERVICE PARAMETERS tab by
choosing GPS and web locations sources configuration and then drag the Web Location Source
type into the object browser.

Open the parameter list for the web source you just created by double-clicking or dragging it into
the workspace. Click Edit and set the source address to the URL of your source, http://example_site.com/object_locations
in our case, and the source format, which will be JSON in this example. Also set the update
interval to how frequently you want to retrieve data from this source (you will need to scroll to the
end of the list for this parameter).

19



Example Configuration for the Web Source Injector

Configuring the parsing
With the connection parameters set, the service should be able to retrieve a JSON string that
looks like the example data. Now we need to tell the service how to parse this string. Firstly we
need to set the root element path to the JSON object containing the location objects. For the
example data the value of this is locationObjects (see Field Path Syntax for further details of the
syntax). As the JSON object pointed to by this root element path contains an array of location
objects, as opposed to a single location object, we also need to ensure single object mode is set
to false. See 1 in the screenshot below.

Next we need to set the data labels. These are the names of the JSON members corresponding to
each data field. Our sample data above has a tag id, tag type and location member. We will set
field name – object name to tagId to point to the tag id. We will also set the location fields, field
name – x, field name – y, field name – z, to point to the entries in the location array, location[0],
location[1] and location[2] respectively. See 2 in the screenshot below.

In this example we want our web source to only use locations for objects of type type1. For this
we need to set field name – filter to tagType and filter value to type1. Any location object with a
“tagType” value other than “type1” will be ignored. See 3 in the screenshot below.

The example source also uses 48 bit tag IDs but we want modify these IDs before we inject them
into our platform, which use 64 bit IDs, such that the leading 16 bits are 1s. We will need to set
the tag id mask to FFFF000000000000 for this, the hex representation of this mask, which will be
bitwise ORed with the tag IDs read from the data. See 4 in the screenshot below.

Note that setting a mask is not necessarily required when using tag id of fewer than 64 bit, we are
just doing it here as an example.

20



Example Configuration for the Web Source Injector

Additional configuration

The Web Source Injector service offers several other configurations options including parameters
for filtering, transforming coordinates and other tag/object options but we are not using any of
these in our example here. See Configuration Parameters for Web Source Injector for details on
how to use these other parameters.

Enabling the web source

With the configuration process complete, we need to set the enabled parameter for this web
source to true. The service will then attempt to retrieve data from the source address and inject
locations.

21



Example Configuration for the Web Source Injector

Viewing locations
With the web source set up we should be getting locations injected based on the source data. As
the data source is a tag source, these locations are injected as tag locations; we need to associate
these tag IDs with objects to be able to view the injected locations in SmartSpace Config.

In the TAG ASSOCIATION tab, select the Associate tag with object option then select the
appropriate object and input your tag Id. For the first tag in our example data, using our example
tag id mask, the id would be FFFF0cb2b725c5f0.

22



Example Configuration for the Web Source Injector

After associating this tag with an object, and assigning a representation to that object’s type, you
should be able to see the object located on the map in the OBJECT PLACEMENT tab so long as it
would be located in one of your location cells.

23



Glossary

Glossary

D

Data field

A single data entry used in generating locations e.g. the x coordinate of the location

L

Location object

Data for an individual location as found in location messages

M

Message

A response from a web source that contains location data

W

Web source

A URL or SQL database that responses to web requests with location data

24


	Web Source Injector
	Introduction to Web Source Injector
	Supported formats
	JSON
	XML
	CSV
	SQL

	Configuration Parameters for Web Source Injector
	Web source parameters
	Connection parameters
	Data field labels
	Object/tag parameters
	Transformation parameters
	Filtering and miscellaneous parameters

	Global Parameters
	GPS References

	Field Path Syntax
	Web Source Injector Example
	Example Web Data
	Example Configuration for the Web Source Injector
	Creating the web sources
	Configuring the connection
	Configuring the parsing
	Additional configuration
	Enabling the web source

	Viewing locations

	Glossary

