
SmartSpace
Ubisense Real-Time Rules :
Concepts and Configuration

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: http://www.ubisense.net.

http://www.ubisense.net/


Copyright © 2020, Ubisense Limited 2014 - 2020. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from
Ubisense at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.net

All contents of this document are subject to change without notice and do not
represent a commitment on the part of Ubisense. Reasonable effort is made to ensure
the accuracy of the information contained in the document. However, due to on-going
product improvements and revisions, Ubisense and its subsidiaries do not warrant the
accuracy of this information and cannot accept responsibility for errors or omissions
that may be contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.net/


Page i

Contents

Ubisense Real-Time Rules: Concepts and Configuration 1

Summary of real-time rules features in version 3.5 2

Real-time control components and data flow 3

Object property data service 3

Use in real-time systems 3

Site-level assertion store data service 4

Use in real-time systems 4

Cellular object property data service 4

Use in real-time systems 5

Restrictions on cellular rules and events 6

Overview of real-time rules engine data processing 6

Where object property data can be set 6

Where object property data can be used 7

Restrictions on data use in rules and event handlers 7

Definition of cellular rules and event handlers 7

Restrictions on cellular rules and event handlers 8

User interface support for real time rules 9

Defining cellular and assertion properties 9

Browsing cellular properties in the object browser 10

Loading and unloading cells 10

Displaying and setting cellular property content 11

Programming with cellular rules and event handlers 11

Rule definition, type checking and new cellular type errors 11

Tracing cellular rules and event handlers 12

Programming support for real-time applications 13

Extensions to the .NET API for cellular operation 13

Enabling run-time checking for real-time violations 13

An example of real-time application logic 14





Ubisense Real-Time Rules: Concepts and Configuration

Ubisense Real-Time Rules: Concepts and
Configuration
This guide introduces the real-time rules capabilities introduced in SmartSpace version 3.5.

1



Summary of real-time rules features in version 3.5

Summary of real-time rules features in version
3.5
The Real-time rules engine feature available from SmartSpace 3.5 onwards provides some
capabilities that make it easy to create scalable real-time control applications by writing rules
and event handlers.

l Cellular object property data service. There is a new ‘Cellular object property data’
service. This is a real-time, cellular equivalent to the existing object property data service,
and it runs at the spatial cell level.

l User-defined cellular properties. The user can declare ‘cellular’ properties. Properties
labeled as ‘cellular’ are managed by the cellular object property data service.

l User-defined assertions. The user can declare ‘assertion’ properties. These look just like
normal properties but their value is managed by the site-level assertion store service.

l Cellular rules engine. The user can define event handlers and rules using cellular
properties and assertions, and these are executed at cell level by an instance of the rules
engine running in the cellular user data store service.

l Cellular .NET object property API. The .NET API has been extended to allow the user to
‘load’ a spatial cell, which will provide access to the values of cellular properties within
the loaded cell, so that they can be read and written just like site level properties.

l Support for writing real-time applications. Evaluation of cellular rules and event handlers
is done in such a way that it always avoids disk contention, and preserves performance at
scale by ensuring that code that can run at cell level does run at cell level. The rules
language has type rules that prevent the user from accidentally breaking these real-time
properties; and the .NET API can be set up to check at runtime for invocations that break
real-time properties and throw a fatal error if it finds them.

l Browsing and debugging support. The object browser panel in the SmartSpace Config
tool has a menu which allows the user to specify a cell to be loaded for cellular
properties, and this provides access to the values of properties within the loaded cell. If
tracing is enabled, the rules engine trace panel will also display the trace output from
rules and event handlers in the loaded cell.

2



Real-time control components and data flow

Real-time control components and data flow
The services that are relevant to real-time control are organized like this:

Figure 1 Organization of the services that are relevant to real-time control

Object property data service
The site-level object property data service manages the normal user-defined data and hosts the
rules engine, which executes the user-defined rules and event handlers.

Use in real-time systems

This service uses a transactional persistent store: when a property value is changed, the service
invokes all the dependent event handlers and rules, potentially changing more properties and
invoking more event handlers and rules; when the set of all dependent changes is calculated,
the service writes them synchronously to the disk and pushes them out to consumers via the
event channel. This means that slow disk response will directly affect the service’s throughput
and latency; while this generally does not matter when dealing with normal workflow data it is

3



Real-time control components and data flow

an issue when implementing real-time control systems in environments where the disk storage
might be buggy or subject to contention.

Site-level assertion store data service
The site-level assertion service manages assertions, which can be declared by external services
(e.g. the ‘Path Group’ controls ‘Object’ assertion declared by the paths and queues services) or,
from version 3.5 onwards, declared by the user (when declaring a property the user can
nominate it as an assertion).

Every assertion visible to (or declared by) the user corresponds to a property in the user data
model, and changes to the rows of the assertion are pushed to the user data service over the
event channel and stored in the user data service, meaning that assertions look just like
properties. But when a row of an assertion is changed in the user data service (either via the UI
or via the ‘set property’ command in an event handler) the change is actually achieved by
calling an RPC on the assertion store.

Use in real-time systems

This service supports transient assertions. The assertions are stored on disk but this storage
process is decoupled from the assertion operation itself, so when an assertion RPC is called on
the assertion store, the RPC up-call does not touch the disk. This means that throughput and
latency are independent of disk performance. However, contention on the RPC interface of the
service itself might be a bottleneck in large-scale deployments.

Cellular object property data service
The cellular user data service is a little bit like the site-level object property data service, with
the following differences:

l It does not manage any site-level user data, but it does cache the parts of the site-level
user data that it needs in order to evaluate site-level rules and events (the cache being
updated over the event channel in the usual way)

l It does manage cell-level user data for properties that were declared using the ‘cellular’
label. The way that cellular properties are managed by the cellular object property data
service is exactly the same as the way that site-level properties and assertions are
managed by the site level services, but done at cellular level

4



Real-time control components and data flow

l It connects directly to the corresponding spatial monitor service in its spatial cell and
receives events directly from there, whereas the object property data service uses the
spatial relation aggregation service to get spatial events

l It executes cellular rules and events, which can set the values of the cellular properties

l It does not use persistent storage for the properties that it manages – if persistent storage
is required it can be achieved by creating an assertion, which will be stored persistently by
the assertion store

Use in real-time systems

Just like the cellular assertion store data service, the real-time rules engine supports a data path
that is isolated from the disk (via transient assertions) and it supports cellular federation, and so
is suitable for large scale real-time control systems.

5



Restrictions on cellular rules and events

Restrictions on cellular rules and events
To understand the restrictions on rule and event definition, you need to understand where and
how the relevant data is managed and how data is processed by the real-time rules engine.

Overview of real-time rules engine data processing
This diagram shows a zoomed-in view of the data sources used in the cellular user data service
and how data arrives in the service, is stored in the in-memory database, and is pushed to the
assertion store.

Figure 2 Processing of data in the real-time rules engine

Where object property data can be set
This table summarizes where the data declared in the data model is managed, depending on
the label applied to it at declaration time.

In simple terms, cellular properties can’t be set from the site-level store (because there is no
site-level overview available for cellular properties, so there is no mechanism for setting them),

6



Restrictions on cellular rules and events

and site-level properties can’t be set from the cell-level store (because to do so takes away the
real-time properties of the cell-level store), but site-level assertions can be set from the cell-
level store (because this doesn’t affect the real-time behavior of the store).

Property
type

Can be set from site level object property data
store / assertion store

Can be set from cellular object
property data store

Property Yes No

Assertion Yes Yes

Cellular
property

No Yes

Where object property data can be used
This table summarizes where the data declared in the data model is visible, depending on the
label applied to it at declaration time. In simple terms, cellular properties can’t be read by the
site-level store (because there is no site-level overview available for cellular properties, so there
is no mechanism for reading them), but all kinds of properties can be read from the cell-level
store.

Property
type

Visible to site level object property data store /
assertion store

Visible to cellular object property
data store

Property Yes Yes

Assertion Yes Yes

Cellular
property

No Yes

Restrictions on data use in rules and event handlers

Definition of cellular rules and event handlers

A rule or event handler is cellular if and only if it either uses or sets a cellular property. In simple
terms, if any cellular property appears in the head or body of a rule or event handler, then this
means that the rule or event handler concerned is cellular.

7



Restrictions on cellular rules and events

Restrictions on cellular rules and event handlers

Because cellular rules and event handlers are executed in the cellular property data service, and
site level properties cannot be set from the cellular property data service (see above for an
explanation of why), it can be deduced that site level properties cannot be set by cellular rules
and event handlers.

8



User interface support for real time rules

User interface support for real time rules

Defining cellular and assertion properties
The property creation dialogs now have the option to specify the storage location of the
property created:

The default choice is to create properties in the site-level service (which was previously the only
choice in earlier versions of the system). When created, the properties are annotated with their
attribute (assertion, cellular or blank for the traditional style of property):

9



User interface support for real time rules

Browsing cellular properties in the object browser

Loading and unloading cells

In the top-right of the object browser window there is a combo box that allows the user to
select which cell-level object property data store to load:

By default, at startup, no cell is loaded and cell-level properties will all appear empty when
browsed. Loading a cell will immediately populate the properties with their contents in the
loaded cell:

10



User interface support for real time rules

Displaying and setting cellular property content

The contents of cellular properties are displayed and set in the same way as with site-level
properties, but when a cellular property is changed its value is changed in the cellular object
property data store.

Programming with cellular rules and event handlers

Rule definition, type checking and new cellular type errors

Cellular rules and event handlers are defined in exactly the same way as site-level ones, with the
exception that, as explained in Restrictions on cellular rules and events, a cellular rule cannot have
a site-level property at its head, and a cellular event handler cannot set a site level (non-
assertion) property.

Normally these constraints will be enforced by simply banning the illegal drag-and-drop
operations that would construct the incorrect code, but in some cases new error messages will
be displayed.

In the example below, ‘name’ and ‘object count’ are both site-level properties, and ‘meeting
count’ is a cellular property. So the definition below is legal (it is a legal site-level event
handler):

11



User interface support for real time rules

But if the last set action is changed by dragging out the ‘object count of a’ and replacing it with
‘the meeting count of a’ from the background, then these errors will be visible:

Setting the meeting count in the event handler makes it into a cellular event handler, and so all
the instances in which site-level properties are set now become errors and are displayed in the
errors window.

Tracing cellular rules and event handlers

Tracing of cellular rules and event handlers works in exactly the same way that all other tracing
works. When tracing is enabled in any rule engine trace window, this turns on tracing in the site
level and cell level rules engines. If an individual SmartSpace Config tool has a cell loaded (via
the object browser combo box) then trace messages for that cell’s rules engine are visible as
well as trace messages for the site-level rules engine.

12



Programming support for real-time applications

Programming support for real-time applications

Extensions to the .NET API for cellular operation
The class Ubisense.UDMAPI.ManagedBrowser (and the associated interface) has two new
functions to support cellular operation:

public void load_cell(Ubisense.USpatial.Cell target);
public Ubisense.USpatial.Cell target_cell();       

The load_cell function does exactly the same thing for the instance of the browser that the
load option in the object browser combo box does for the SmartSpace Config tool: it caches
the state of the cellular object property data service for the specified cell (or no state if the cell
is nil). The target_cell function returns the currently-cached cell.

Enabling run-time checking for real-time violations
The class Ubisense.UDMAPI.ManagedBrowser (and the associated interface) has two new
functions to support writing real-time managed browser code:

public bool real_time_mode();
public void real_time_mode(bool mode);

The real_time_mode(bool) function, called with the argument true, enables ‘real-time mode’ ,
ensuring that any attempt to set site-level services in the browser will cause a fatal error,
ensuring that the user cannot accidentally write code that might suffer from contention on the
site-level property data store, and when called with the argument false, any property can be set.
The real_time_mode() function returns the current state of the real time mode in the browser.

13



An example of real-time application logic

An example of real-time application logic
In this simple example, we create some logic that is evaluated at cell level and calculates the
number of interactions that each ‘Test type’ object is involved in. This uses these properties:

The spatial properties are defined such that the ‘big extent’ is a big space round the object and
the ‘little extent’ is a small space round the object. Then these rules and event handlers are
defined:

14



An example of real-time application logic

You can import these rules and event handlers into your SmartSpace installation, by loading
cellular_example.txt using the Business rules workspace. See Module import and export for
information.

So now, if two ‘Test type’ objects are moved close to each other, their meeting counts are both
set to 1. If an instance of SmartSpace Config is created and the relevant spatial cell is loaded,
the state can be observed changing when the objects are brought close to each other and then
moved away again.

Using the state defined above, this code example shows how the new operations of
ManagedBrowser can be used in practice. First we define an object to handle callbacks in exactly
the same way that we would do for a site-level property, and then we define a simple function
that reads the values of one property and uses them to set the values of another.

15



An example of real-time application logic

class EventPrinter : IRowEvents
{

public void data_inserted(string prop, List<string> row)
{

Console.Write("inserted: " + prop + " ");
foreach (var x in row)

Console.Write(x + " ");
Console.WriteLine("");

}

public void data_removed(string prop, List<string> row)
{

Console.Write("removed: " + prop + " ");
foreach (var x in row)

Console.Write(x + " ");
Console.WriteLine("");

}

public void data_updated(string prop, List<string> before, List<string>
after)

{
Console.Write("updated: " + prop + " ");
foreach (var x in before)

Console.Write(x + " ");
Console.Write("-> ");
foreach (var x in after)

Console.Write(x + " ");
Console.WriteLine("");

}

public void establish()
{

Console.WriteLine("establish event received");
}

public void schema_changed()
{

Console.WriteLine("schema_changed event received");
}

}

static void ProcessPropertyValues (ManagedBrowser browser,string
property,string target_property,int target_value)

{
Console.WriteLine("Printing values, loaded cell = " + browser.target_cell

());
var values = new Dictionary<List<string>, string>();
browser.get_property_values(property, out values);
foreach (var value in values)
{

foreach (var arg in value.Key)

16



An example of real-time application logic

Console.Write(arg + " ");
Console.WriteLine(value.Value);

Console.WriteLine("Setting " + target_property + " to " + target_
value + " for " + value.Key[0]);

browser.set_property_value(target_property, value.Key, target_
value.ToString());

}
}

Finally, the main program shows how the new operations can be used.

17



An example of real-time application logic

static void Main(string[] args)
{

// Retrieve the cell from the command line arguments.

// When this program is running as a service at spatial cell level, the
// cell will automatically be passed in on the command line.
// If you are developing the program and want to test it, then set the command
// line arguments in the project properties in Visual Studio. To find the
// required arguments to use, restart the 'Cellular object property data'
// service; if you retrieve the trace (e.g. in the SmartSpace Config trace
// component) then it will show lines of the form:

// [06/09/2019 13:40:28] warning: controller stopped process for Business
rules/Cellular object property data V3.5.7275 on
USpatial::Cell:04007zTGQoW0tP6k006CnG000Mo

// [06/09/2019 13:40:28] warning: controller saved files for Business
rules/Cellular object property data V3.5.7275 on
USpatial::Cell:04007zTGQoW0tP6k006CnG000Mo

// [06/09/2019 13:40:31] warning: controller started process for Business
rules/Cellular object property data V3.5.7275 on
USpatial::Cell:04007zTGQoW0tP6k006CnG000Mo

// [06/09/2019 13:40:31] warning: ubisense_cellular_rules_engine.exe
(Ubisense/Business rules/Cellular object property data) license valid

// so in this case the arguments would be: USpatial::Cell
04007zTGQoW0tP6k006CnG000Mo

var spatial_cell = new Ubisense.USpatial.Cell();
spatial_cell.Narrow(CommandLine.Object(args));
if (spatial_cell.Nil())

return;
Console.WriteLine("Cell from command line = " + spatial_cell.ToString());

ManagedBrowser browser = new ManagedBrowser();

// Should print "Real time mode = False"
Console.WriteLine("Real time mode = " + browser.real_time_mode().ToString());

// Set the real time mode to true
browser.real_time_mode(true);

// Should print "Real time mode = True"
Console.WriteLine("Real time mode = " + browser.real_time_mode().ToString());

// If uncommented, the following operation should give a fatal error of this form:
// [06/09/2019 13:27:44] fatal: can't set site-level property name<Test_type> when

in real-time mode

// string obj;
// browser.create_object("Test_type", name, out obj);

for (int i = 0; i < 10; ++i)

18



An example of real-time application logic

{
// When the target cell is nil, there will be no values of the cellular
// property meeting_count<Test_type>.
browser.load_cell(new Ubisense.USpatial.Cell());
ProcessPropertyValues(browser, "meeting_count<Test_type>", "cellular_test<Test_

type>", i);

// When the target cell is a specific cpatial cell, meeting_count<Test_type>
// will have values as they are in that cell.
Console.WriteLine("Loading cell " + spatial_cell.ToString());
browser.load_cell(spatial_cell);
ProcessPropertyValues(browser, "meeting_count<Test_type>", "cellular_test<Test_

type>", i);
}

// Wait and receive callbacks from the cell-level service

browser.set_event_callback(new EventPrinter());
browser.add_property("meeting_count<Test_type>");

while (true)
System.Threading.Thread.Sleep(1000);

}

19


	Ubisense Real-Time Rules: Concepts and Configuration
	Summary of real-time rules features in version 3.5
	Real-time control components and data flow
	Object property data service
	Use in real-time systems

	Site-level assertion store data service
	Use in real-time systems

	Cellular object property data service
	Use in real-time systems


	Restrictions on cellular rules and events
	Overview of real-time rules engine data processing
	Where object property data can be set
	Where object property data can be used
	Restrictions on data use in rules and event handlers
	Definition of cellular rules and event handlers
	Restrictions on cellular rules and event handlers


	User interface support for real time rules
	Defining cellular and assertion properties
	Browsing cellular properties in the object browser
	Loading and unloading cells
	Displaying and setting cellular property content

	Programming with cellular rules and event handlers
	Rule definition, type checking and new cellular type errors
	Tracing cellular rules and event handlers


	Programming support for real-time applications
	Extensions to the .NET API for cellular operation
	Enabling run-time checking for real-time violations

	An example of real-time application logic

