) Ubisense

SmartSpace®
RDBMS Map Configuration Guide

From version 3.5.1

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: https.//www.ubisense.com

https://www.ubisense.com/

Copyright © 2023, Ubisense Limited 2014 - 2023. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from Ubisense
at the following address:

Ubisense Limited

St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https.//www.ubisense.com

All contents of this document are subject to change without notice and do not represent
a commitment on the part of Ubisense. Reasonable effort is made to ensure the accuracy
of the information contained in the document. However, due to on-going product
improvements and revisions, Ubisense and its subsidiaries do not warrant the accuracy of
this information and cannot accept responsibility for errors or omissions that may be
contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AnglelD® are registered trademarks
of Ubisense Ltd. DIMENSION4™ and UB-Tag™ are trademarks of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/

Introduction to RDBMS map 2
Features 3
Database connections ... 3
SQL SEIVET oo 3
OraCl e 3
EXP O ING 3
Exporting from application data to a database connection ... 3
Binding columns into queries ... 3
Scheduled execution ... 3

I DO NG 4
Importing from a database connection to applicationdata 4
Multiple properties per QUEIY ... 4
Bound import QUENIES ... 4
Controlling the insertion and removal of rows ... 4
Creating/deleting objects ...l 4
Scheduling execution ... 4
Installation 5
Creating a Database with SQL Server 5
Installing the ODBC Driver for SQL Server on Windows ... 5
Installing the ODBC client for SQL Serveron Linux ... 6
Creating a Database with Oracle ... 6
Installing the Oracle Client on Windows ... 6
Oracle CHeNnt ... 6
Microsoft Visual C++ Redistributable ... 7
Disabling Automatic Diagnostic Repository ... 7
Installing the Oracle Clienton Linux ... 7
Disabling Automatic Diagnostic Repository ... 8
Configuration 10

Background conCepts 10

Database connections ... 10
Creating @ CoONNECLION ... 10
Testing @ CONNECLION ... 10
Editinga connection ...l 11
Deleting a connection ... 11
Connection eXamples . . 11

Filtering imports and exports by type and property ... 12

EX DO S . 12
Creating, editingand deleting 12
EXPOrt @ditor . 13
The query editor ... 15
Scheduling eXports ... 17
EXP Ot BT OrS 17

I OIS 17
Creating, editingand deleting ...l 17
Import editor ... 18

TraCING Lo 26

Deployment tool 28

Pageii

Introduction to RDBMS map

The relational database integration feature is used to export and import SmartSpace data to and
from external databases. The data to be exported and imported can be defined in configuration
pages within the SmartSpace Config application. Imports and exports can be configured
simultaneously to and from multiple databases, as required.

This guide describes the RDBMS map features of SmartSpace, and how they should be
configured, tested and deployed.

The intended audience is those installing and configuring a SmartSpace system or application,
who need to exchange application data with third-party database systems.

Features

This section introduces the basic functionality of the RDBMS map feature. For more details see the
specific configuration sections below.

Database connections

A database connection describes the type of database and the connection string used to connect
to that database. The database server types supported are:

SQL Server
Database versions: 2008 R2 or higher. Limited queries may work with earlier versions.
» Windows servers using ODBC and SQL Server Native Client library

e Linux servers using Microsoft ODBC Driver 17 for SQL Server

Oracle
Database versions: 11G R2 or higher. Limited queries may work with earlier versions.
e Windows servers using Oracle Instant Client 21.x library

e Linux servers using Oracle Instant Client 21.x library
Exporting

Exporting from application data to a database connection

The basic export functionality is to select properties of application objects to export, and to build
export SQL statements to run on a database connection, which include the property fields (keys
and value).

Binding columns into queries

The export SQL statements can also include other properties of the application objects in the
property to be exported.

Scheduled execution

Execution can be triggered every time an included property is changed.

Changed properties can be accumulated and applied periodically in a batch.

Features

Exports can also be executed when a trigger property changes.

Importing

Importing from a database connection to application data

SQL queries can be executed against a database connection, and the results loaded into
properties of application objects.

Multiple properties per query

Imports can be configured to map specific columns returned by the SQL query to different
properties of a single application object type.

Bound import queries

Import queries can include properties of the application object type, in which case they are
executed once for each instance of the object type determined by execution conditions.

Controlling the insertion and removal of rows

When new rows are returned by the query, the import can create new property rows or ignore
them. Similarly, when old rows are no longer returned by the query, the import can delete the
property rows or ignore them.

Creating/deleting objects

When the import property is the name property of the imported object type, then the insert and
remove behavior causes object instances to be created or deleted.

Scheduling execution

An import can be executed periodically. Periodically executed imports can include a test query
which returns a string (a "hash" or change control value) that changes only when the main query
needs to be executed. This test query can be skipped occasionally if there is a chance of hash

collisions.
An import can also be executed at specific times every day.
An import can be executed when any of its bound properties change.

Finally, an import can be executed when another trigger property changes.

Installation

The Relational Database Integration feature comprises three service packages:

e URelationalDatabase.xml: Installs the configuration service which allows imports and
exports to be configured in the SmartSpace Config application. This should always be
installed.

» URelationalDatabaseSQLServer.xml: Installs the service that executes imports and exports
with database connections of type "Sql".

See Creating a Database with SQL Server for installation requirements for connections of

this type.

» URelationalDatabaseOracle.xml: Installs the service that executes imports and exports with
database connections of type "Oracle".

See Creating a Database with Oracle for installation requirements for connections of this
type.

All three service packages can be safely installed if integration is required with both database
server types.

The configuration user interface is the RDBMS MAP task of the SmartSpace Config application. To
install this, use the Ubisense Application Manager as described in SmartSpace Installation. This will
ensure that the correct version of SmartSpace Config will be executed to match the platform you
are connected to. Thus for the 3.5 features you must have also deployed the
USmartFactoryConfigUl.xml package from the 3.5 SmartSpace release.

Note: Use of SmartSpace Config to configure RDBMS map means that even if you are installing
your database on a Linux server, you must have access to a Windows client machine in order to
run the configuration software.

Creating a Database with SQL Server

Installing the ODBC Driver for SQL Server on Windows

For SQL Server on Windows, a suitable ODBC driver for SQL Server should be installed on the
same controller server. For example, SQL Server Native Client 11 for SQL Server 2012 or 2014. See
Microsoft documentation of the native client for specific version numbers.

Installation

Installing the ODBC client for SQL Server on Linux

For SQL Server on Linux, you must install the official ODBC client. Instructions are available on the
Microsoft website: Microsoft ODBC Driver 17 for SQL Server

Ensure the driver in odbc.ini matches the string in odbcinst.ini.

cat /etc/odbcinst.ini

[ODBC Driver 17 for SQL Server]

Description=Microsoft ODBC Driver 17 for SQL Server
Driver=/opt/microsoft/msodbcsgll7/1ib64/libmsodbcsql-17.4.5s0.2.1
UsageCount=1

cat /etc/odbc.ini

[MSSQLServerDatabase]

Driver=0DBC Driver 17 for SQL Server
Description=Connect to my SQL Server instance

Trace=No
Server=sqglserverinstance.domain

Creating a Database with Oracle

Installing the Oracle Client on Windows

In order to use this service, the Oracle Instant Client21.x should be installed on the same
controller server, and the system PATH environment variable should include the folder containing
the oci.dll library.

This guide uses the example of installing a connection for Oracle 12.1. Other versions of Oracle
will follow a similar procedure.

Oracle Client

The 32-bit version of Oracle Instant Client is required for compatibility with Ubisense services.

1. Download the 32-bit Oracle Instant Client 21.x zipfile from
https://www.oracle.com/technetwork/topics/winsoft-085727.html.

2. Unzip the file, placing the contents in a suitable folder, for example C:\Oracle\instantclient_12_
1.

3. Append this folder location to the system PATH environment variable.

Windows has two path variables, system and user: make sure you update the system

environment variable.

https://docs.microsoft.com/en-us/sql/connect/odbc/linux-mac/installing-the-microsoft-odbc-driver-for-sql-server?view=sql-server-ver15#microsoft-odbc-driver-17-for-sql-server
https://www.oracle.com/technetwork/topics/winsoft-085727.html

Installation

a. Start Control Panel and choose System and Security > System> Advanced system
settings.

b. Click Environment Variables....
c. Select Path from the system variables in the lower pane, click Edit and amend the
path by adding the location of the Oracle Instant Client.
Microsoft Visual C++ Redistributable

Oracle Instant Client 21.x requires that the redistributable package for Visual Studio 2010 is
installed.

1. Download the redistributable package for Visual Studio 2010 from Microsoft from
https.//support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads.

2. Make sure to download the 32-bit version of this software: the downloaded file will be
called vcredist_x86.exe.

3. Run vcredist_x86.exe to install the redistributable library.

Disabling Automatic Diagnostic Repository

Recent Oracle database versions include the Automatic Diagnostic Repository (ADR) feature
which is turned on by default when you deploy Oracle Instant Client. With ADR turned on, the
"Ubisense/Reporting/Report client interface Oracle” service can restart intermittently under load,
especially with multiple report queries executing at the same time. This leads to poor performance
of Reporting, and possibly of the web site as a whole.

Therefore ADR should be disabled on the machine that will be running the
“Ubisense/Reporting/Report client interface Oracle” service.

1. Open the sqlnet.ora file.

This file is found in the TNS admin folder, which is usually pointed to by the environment
variable TNS_ADMIN.

2. Append the following line to the file:

DIAG ADR ENABLED=off

Installing the Oracle Client on Linux

Requirements

https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads

Installation

To get Oracle reporting or RDBMS services to work, you must install libnsl using your preferred
package manager.:

« install libnsl using your preferred package manager

 disable the Automatic Diagnostic Repository (ADR) feature included in recent versions of
Oracle

Installation Process
Note: You need an Oracle account to download the Oracle client.
Download instantclient basic 12.2 x86-64 rpm from Oracle.

Ensure the prerequisites for instantclient are installed:

sudo apt-get install libaiol

For Debian-based systems, use alien to install the rpm:

sudo apt-get install alien
sudo alien -i oracle-instantclientl2.2-basic-12.2.0.1.0-1.x86 64.rpm

Ensure that the dynamic linker can find the Oracle libraries by updating the runtime link path. For
example, place the path to the instantclient libraries into a config file:
cat /etc/ld.so.conf.d/oracle.conf

/usr/lib/oracle/12.2/client64/1ib/

Now update Idconfig:

sudo ldconfig

Disabling Automatic Diagnostic Repository

Recent Oracle database versions include the Automatic Diagnostic Repository (ADR) feature
which is turned on by default when you deploy instantclient. With ADR turned on, the
“Ubisense/Reporting/Report client interface Oracle” service can restart intermittently under load,
especially with multiple report queries executing at the same time. This leads to poor
performance of Reporting, and possibly of the web site as a whole.

Therefore ADR should be disabled on the machine that will be running the
“Ubisense/Reporting/Report client interface Oracle” service.

Installation

1. Open the sqlnet.ora file.

This file is found in the TNS admin folder, which is usually pointed to by the environment
variable TNS_ADMIN.

2. Append the following line to the file:

DIAG ADR ENABLED=off

Configuration

Background concepts

Later we will refer to "simple" and "complex" properties. For reference, these are defined in
separate parts of the Types and objects workspace in SmartSpace Config.

» A "Simple" property is one which has a single object as key, and a corresponding value. For
example "country code of <Product>: <String>" or "<Product> delivery date <Time>".
Given an instance of the key object type, there is at most a single value of the property.

» A "Complex" property is one where the key includes several columns, or there can be
multiple values for each key. For example "<Product> is in <Function>: <Bool>" where the
functions can overlap, or "<Product> entry time in <Function>: <Time>", where the key

has multiple columns <Product> and <Function>.

A "name" property is a simple property of an object type with a string value. It is used to uniquely
identify the instance of the object. This might be an unique identifier such as the build number of
a Product, or the process step name of a Function. An object type can have at most one name
property, which may be inherited from its parent types. Thus for a given type of object, there is
either no way to look up the object by its name string, or just one way. This property is used
during import execution.

Database connections

Creating a connection

To create a database connection, double-click <Create new database> in the top pane of the
database integration task in SmartSpace Config. This will bring up the editor.

 Enter a new database name. This must be distinct from any existing connections. Otherwise
the new database connection configuration will replace the existing one, which is unlikely
to be the desired behavior.

» Select the type of database to connect to: SQL Server or Oracle.

» Enter a connection string suitable for the database type.

Testing a connection

To test that a connection can be made, click Test.

10

Configuration

For SQL Server, if an error is generated, for more information go to SQL Server Management
Studio and under Management/SQL Server Logs, look for the notification of a failed login, which
should describe the reason the login failed. If the login failure doesn't appear in the server log,
check the server name and instance. If they are correct, run the SQL Server Configuration
Manager and ensure that the TCP/IP protocol is enabled for your server instance.

Editing a connection

To edit a database connection, double-click the row in the top pane of the database integration
task in SmartSpace Config. If you change the name, this will be ignored.

Deleting a connection

To delete a connection, select the row, then press Delete.

If the database connection is currently in use within a configured import or export, this will be
indicated and deletion will be canceled. Otherwise a confirmation dialog is displayed: click Delete
to confirm deletion.

Connection examples

SQL Server on Windows

For SQL Server Native Client 11, using Windows authentication, the database MESDB must allow
connection with role db_datareader (for imports) or db_datawriter (for exports) for the NT
AUTHORITY/SYSTEM user (assuming that is the account under which the Ubisense Local Controller
service is executed):

Driver={SQL Server Native Client
ll.O};Server:LOCALHOST\SQLSERVERZ008;Database:MESDB;Trusted_Connection:yes;

SQL Server on Linux

For SQL Server on Linux, use a connection like this (assuming the above odbc.ini was created):

DSN=MSSQLServerDatabase;Database=RFID;UID=sqglserveruser; PND=PASSWORD

Oracle

For Oracle, the connection string format is the same for Windows or Linux and takes the format:

username/password@oracleserver:1521/oracleinstance

1"

Configuration

For example, for Oracle 11g, server ORACLEQ1, port 1522, instance mes.production.internal, using
user "MESDB", password "unsafepassword":

MESDB/unsafepassword@ORACLE(01:1522/mes.production.internal

or

MESDB/unsafepassword@ (DESCRIPTION= (ADDRESS LIST= (ADDRESS=(PROTOCOL=TCP) (HOST=ORACLEOL)
(PORT=1522))) (CONNECT_ DATA= (SERVER=DEDICATED) (SERVICE NAME=mes.production.internal)))

Filtering imports and exports by type and property

Between the database connection pane and the test of the task there are two filter dropdowns.
These can be used to restrict the displayed exports and imports to only those with the matching
type and/or property. These controls also restrict the choices available in some other dropdowns
within the interface, to make it easier to configure exports or imports relating to a specific part of
the application data model.

Filter by IProdu(t VI ‘Ename‘Produ:t' i v

If an item you wish to edit is not visible, make sure that the current filter does not exclude it.

Exports

Creating, editing and deleting

To create a new export, double-click on the <Create new export> line in the exports pane. To
edit an export, double-click the export line. In both cases the Export editor is displayed.

To delete an export, select the row and then press Delete. A confirmation dialog is displayed.

12

Configuration

Export editor

Export property w

UPSERT SQL
< Create New Cuery=

DELETE SQL
< Create New Cuery=

Update period | 0 = minutes | Zero means no periodic update

Update when this property changes | <No trigger property> 87

Save Cancel

In the Export editor, no changes are made to the current configuration until the Save button has
been clicked. It is safe to edit the export upserts and deletes without any impact on the current
configured system. The Cancel button discards any pending changes.

Choose the property to export

At the top of the Export editor is a drop-down which selects the primary application data property
to be exported. Each property can be in only one export definition, but there can be several
"upsert” and "delete" statements in an export, so it is possible to export from a given property to
multiple destination databases, or tables within a database. The primary property must be selected
before any SQL queries can be added, because the columns and value of the property determine
the other related properties which can be embedded into the queries. The property cannot be
changed once it has been saved.

Construct Upsert and Delete queries

An upsert query is executed with current values of the exported properties, and should update or
insert the row in the database to match the current values in the SmartSpace application data.

A delete query is executed when a specific row is removed from the SmartSpace application data.

One important question in database export is: what happens if changes occur within SmartSpace
while the RDBMS map service is stopped? Similarly, what happens if the target database

13

Configuration

connection fails, or one of the statements fails to execute? From version 3.4, behavior on service
startup and establish has been improved to ensure the RDBMS module is robust to such events.
The service keeps track of the changes to business objects and properties that have been
successfully applied to the database. In this way it will automatically retry statements that have
failed to execute, and it is able to detect the set of changes that have occurred since it was last
running, and immediately executes the corresponding upsert or delete statements to reflect
these changes in the target database.

To edit or create a query, double-click the appropriate line in the Upsert SQL or Delete SQL list
boxes. This will display the query editor.

Example Upsert

Whilst any SQL statement can be used in both upsert and delete actions, a typical upsert can be
written using the MERGE statement in SQL. For example, in SQL Server:

MERGE FunctionMilestone WITH (HOLDLOCK) AS target
USING (SELECT

[[name<Function>]]

4

[[milestone<Function>]]

) AS source (Name, Milestone)

ON (target. [Function] = source.Name)

WHEN MATCHED THEN

UPDATE SET Milestone = source.Milestone

WHEN NOT MATCHED THEN

INSERT ([Function], Milestone) VALUES (source.Name, source.Milestone)

Here the target table in the database is FunctionMilestone. The export would be of a property
called "milestone <Function>: <String>", which is a simple property of the "Function” type. The
source table of the merge statement is formed by directly creating a single row from the
exported properties bound into the query—this is represented here in pseudo-code by the
syntax "[[property]]".

The keyword "Function” has been escaped with square brackets to avoid an error. Also
note the use of the HOLDLOCK, which is only required if another application might
also modify the target table.

A very similar statement is available in Oracle.
Example deletion

To make delete statements robust, they should only use a single property value, such as the name
or unique ID of an object in SmartSpace. This is because the changes to business object

14

Configuration

properties are processed asynchronously in the RDBMS map service, so by the time they are
executed the other property values for the object may have already been removed.

Consider, for example, an exported property "comment<Product>:String".

We could set the delete statement to be:

DELETE FROM ExportCommentTable WHERE Id=name<Product> AND
Comment=comment<Product>

Now if a given product is deleted in SmartSpace, the name and comment will be removed. When
the change to remove the product name is processed, the comment of the product has already
been removed, so the delete statement will not work.

Instead, we could use the simpler statement:

DELETE FROM ExportCommentTable WHERE Id=name<Product>

Now the statement can be evaluated as the product name is removed, because the service knows
the name that has been removed, and doesn't have to look up the comment of the same product.

The query editor

The query editor allows a database connection to be selected, and then a sequence of alternating
"SQL Text" and "Property" entries to be configured. These are concatenated to build the SQL
statement to be executed.

The property selection drop-down includes the value of the primary property of the export (at the
very bottom of the list) and also all possible properties of objects otherwise included in the
primary exported property. For example, if the primary property is " <Product> has <Attribute>",
where both Product and Attribute are object types, then the drop down will include all "simple"
properties of Product; all simple properties of Attribute; and the value 'Product’ has 'Attribute’.

15

Database

SOL Text

Property

SOL Text

Property

SQL Text

Property

SOL Text

Property

SQL Text

Property

SOL Text

Save

Configuration

[Long TestDB

MERGE AssetAttribute WITH (HOLDLOCK]) A5 target USING (SELECT

[

link of 'Product’

max seconds between updates 'Ubisense Tracked Object’
milestone 'Product’

model 'Product’

name 'Product’

next shift time tick 'Product’

only generate parked locations flag 'Ubisense Tracked Object’
owner 'Ubisense Contained Object’

package of 'Product’

paint of 'Product’

priority of 'Product’

speed in metres per second 'Ubisense Tracked Object’
stale flag 'Ubisense Tracked Object’

tag removal pending flag 'Ubisense Tracked Object’
target waypeint ‘Ubisense Tracked Object’
tightenings front left of 'Product’

tightenings left of 'Product’

tightenings rear of 'Product’

tightenings rear left of 'Product’

tightenings right of 'Product’

total age 'Product’

total age prior to entering current function 'Product’
trim of 'Product’

update age flag 'Product’

update rate in hertz 'Ubisense Tracked Object’
upgrade total age flag 'Product’

year of 'Product’

'Object’ needs default parameters

name "Attribute’

'Product’ has 'Attribute’

When there are multiple columns in the property with a given object type, they will be

distinguished in the drop-down by a number, where the first object of the type will be "1", and

the second "2", etc. For example, if there was a property '<Function> is prerequisite of

<Function> in <Process Map>', then the available properties would include "name 'Function’: 1"

and "name 'Function’; 2"

When the export is executed for each row of the primary property, the text and selected property

values will be used to create the SQL statement to be executed.

The Save button on the query editor does not actually make any changes to the
currently configured exports. Only the Save button in the Export editor applies the
pending changes.

16

Configuration

Scheduling exports

An export will by default be executed when any property in the export is changed. When a row is
inserted or updated, the upserts will be executed. When a row is deleted, the deletes will be
executed.

If an update period is specified, then changes will be accumulated by the service until that period
expires, and then all changes will be executed at once as a single batch. This is useful if a
SmartSpace property changes frequently, but the integration only requires occasional updates to
the database table, because it reduces the database server load.

It is also possible to specify a trigger property. If a row of the trigger property is inserted, deleted
or changes, then the upserts for the corresponding objects will be executed. If the trigger
property does not share any object types with the exported property then it will have no effect.

Finally, when the specific database engine service starts, all export upserts are executed for all
current rows of their primary properties.
Export errors

When an error occurs executing an export upsert or delete, the error will be logged to the "rdb_
exception” platform monitor stream. Enable this stream while configuring exports to view errors in
the current configuration. See Tracing for information on other streams.

Unlike imports, there is no Test button.

Imports

Creating, editing and deleting

Double-click on <Create new import> to add a new import definition, and double-click an
existing import to edit it. In both cases the Import editor will be displayed. To delete an import,
select the row and press Delete. A confirmation dialog is displayed.

17

Configuration

Import editor

Import type v

Edit quer

IMPORT TO PROPERTY FROM COLUMNS INSERT NEW REMOVE OLD

<Create new result>

Execute
every 0 3| minutes

[test for changes with Edit quer

[skip test once time in
[each day at times (use 24 hour clock)
[CJwhen bound properties change

[CJwhen this property changes

In the Import editor, no changes are made to the current configuration until the Save button has
been clicked. It is safe to edit the import and test without any impact on the current configured
system. The Cancel button discards any pending changes.

Select the import type

Each import has a primary object type, which is selected in the Import type drop-down, at the
top of the editor. This cannot be changed once an import has been defined, because the type
chosen determines the properties available to import into, and those that can be bound into

queries. If the import is configured to create and delete objects, then those objects will be this

type.
It is not possible to define the query or any imported property mappings until the import type
has been selected.

Define the query

The query definition can be edited by clicking the Edit query button. You cannot directly type
into the query definition text box as this is just for reference. The query editor is the same window
as in the Export editor. Select a database connection to use, and then query is built up from an
alternating list of SQL text and (optional) bound properties.

18

Configuration

Database (Long TesiDB .

SQL Text select [Function],[Milestone] from FunctionMilestone where [Function] =

PIopets [name Function =

SQL Text

Property

SQL Text

Property

SQL Text

Property

SQL Text

Property

SQL Text

There are two forms of import query, and they are executed differently.

e Unbound: When no property drop-downs are configured, and the entire query is contained
in the first "SQL Text" line, then the query will be executed once each time it is triggered,
and all rows applied to the current application data as defined by the property column

mappings.

e Bound: When at least one property drop-down is configured, the query will be executed
separately for each object instance for which it is triggered. See the Execution conditions

section below. The results for each execution will then be applied to the current application
data as defined by the property column mappings. The query shown above is a bound

import query.
In the import configuration, the properties available will all be simple properties of the import
type.

The Save button on the query editor does not actually make any changes to the
currently configured imports. Only the Save button in the Import editor applies the
pending changes.

Property column mappings

Each query can import into one or more properties of the import type. The "Import to property"
section of the editor is used to set up these property mappings, including which properties are
imported to, and which result columns returned by the SQL query map to each column in the
properties.

19

Configuration

Double-click <Create new result> to add a new mapping, or double-click an existing mapping to
edit it. To delete a mapping, select a row and press Delete. No confirmation dialog is shown, but
recall that no changes are actually applied until the "Save" button is clicked in the Import editor.

Import to property [milestone 'Function': String -

Select the property to which the result columns should be imported. Note that each property can
only appear in a single import mapping, so if the property you wish to import to does not appear
in the drop-down, it is probably already mapped in another import. To track down other uses of a
property, use the filter controls in the main task pane.

Then type a comma-separated list of column numbers in the SQL query results to use for that
property. The column numbers start at 1, so to use the first and second result column, type "1,2".

The number of columns that must be specified depends on the type of property selected.

» Fora"name" property of the import type, only a single result column should be selected.
Importing to a name property can be used to create and remove instances of objects, in
combination with the "insert new" and "remove old" flags.

e Fora "simple" property of the import type, two columns should be selected, one for the
object and one for its column.

e For a "complex" property, one column must be defined for each key of the complex
property, and one for the value.

Any property columns which are objects must be mapped to a string result column which is the
name of the object. When importing the results, the result column string is looked up using the
name property of the object type in the corresponding property column. See below.

Next specify the insertion and removal behavior for this property.

* Insert new: Check this box to insert property rows returned by the query for which the
property key is not currently contained in the SmartSpace application data. If the mapped
property is the name property of the import type, this causes the object to be created with
the given name.

20

Configuration

» Remove old: Check this box to remove property rows not returned by the query for which
there is a current property key in the current SmartSpace application data. If the mapped
property is the name property of the import type, this causes the object instance to be
deleted when no longer returned by the query. For an unbound query, all current property
rows are expected to be returned by the query. For a bound query, only the property rows
for the triggering object are expected to be returned. Any expected rows which are not
returned will be removed if this box is checked. Thus this flag can be used correctly with
bound queries.

The Save button on the property column mapping editor does not actually make any
changes to the currently configured imports. Only the Save button in the Import editor
applies the pending changes.

Testing the query

The import query and mappings can be tested before they are saved. Click the Test query button
at the bottom of the Import editor. To test a query, the service for the database type must be
running (Relational Database SQL Server, or Relational Database Oracle), otherwise an error will
be shown. This is the only part of configuration which requires the database specific service to be
deployed and running.

When a query is executed, a text window is displayed showing the result and technical details.

21

Test query succeeded

Execution started
SQL statement is select [Function],[Milestone] frem FunctionMilestone
SQL statment result properties
==== COLUMN #1 ====
name=Function
dbtype=-9
otl_var_dbtype=1
dbsize=150
scale=0
prec=150
nullok=0
==== COLUMN #2 ====
name=Milestone
dbtype=-9
otl_var_dbtype=1
dbsize=250
scale=0
prec=250
nullok=0
Results read for property: [Offline]milestone<[OfflinelFunction>
{UserDataModel::[Offline]Function:04007 2 AIWvBYIEm000Aam0002L;Finish}
{UserDataMedel:[Offline]Function:04007) AIWvBVIEmM000Aam0002P; Last Test}
{UserDataModel:[Offline]Function:040072) AIWwBVIEm000Aam0002R, Inspect}
{UserDataModel::[Offline]Function:040072) AIWBVIEM000Aam0002T; Buy off}
{UserDataModel::[Offline]Function:04007z) AIWvBYIEmM000Aam0002t; Test}
{UserDataMedel::[Offline]Function:04007 20w G YI53lwm000FGG000nX; Rework}
{UserDataModel::[Offline]Function:040072)wSDO7P.UGD0DEZWO004R; Pass To Sales}
{UserDataModel::[Offline]Function:04007zLeth_DTAIm000A2m0002u; Trim and Final}
Actions for property: [Offline]milestene< [Offline]Function >
set row: {UserDataModel:[Offline]Function:04007 2w G YIS 3lwm000F G GO00nX; Rework}
Execution finished

Close

The test output includes:

» The SQL statement generated from the configured SQL query.

 Any errors or exceptions generated when the SQL was sent to the database.

Configuration

e The output columns of the SQL statement, and their internal types and precision. For

reference, the otl_var_dbtype field of each column is one of:

Code | Type

1

null terminated string

8-byte floating point number

4-byte floating point number

signed 32-bit integer

unsigned 32-bit integer

22

Configuration

Code | Type

6

signed 16-bit integer

signed 32-bit integer (for 32-bit, and LLP64 C++ compilers), signed 64-bit integer (for
LP-64 C++ compilers)

data type that is mapped into Oracle date/timestamp, DB2 timestamp, MS SQL
datetime/datetime2/time/date, Sybase timestamp, etc.

data type that is mapped into LONG in Oracle 7/8/9/10/11/12, TEXT in MS SQL Server
and Sybase, CLOB in DB2

10

data type that is mapped into LONG RAW in Oracle, IMAGE in MS SQL Server and
Sybase, BLOB in DB2

11

data type that is mapped into CLOB in Oracle 8/9/10/11/12

12

data type that is mapped into BLOB in Oracle 8/9/10/11/12

16

DB2 TIME data type

17

DB2 DATE data type

18

Oracle timestamp with timezone type

19

Oracle 9i/10g/11g TIMESTAMP WITH LOCAL TIME ZONE type

20

MS SQL Server, DB2, MySQL, PostgreSQL, etc. BIGINT (signed 64-bit integer) type

23

RAW, BINARY, VARBINARY, BYTEA, VARCHAR BYTE, CHAR BYTE, etc.

27

\

unsigned 64-bit integer

J

» The results read when the query was executed, after looking up internal object IDs for any

object names read. Note that if the query is a bound query, it is tested with an arbitrarily

chosen instance of the import type picked from the current application data.

» Any type conversion errors when the query results are applied to the mapped properties.

» The actions that would be applied to the SmartSpace properties if the query were actually

executed right now. Actions are insert row, set row and delete row, and also show creation

and deletion of objects. No actual actions are applied during the test.

23

Configuration

Forcing columns to match property types

Sometimes the database binding may have a default type for the results of a query that does not
match the property it is being imported into. For example, if the property has a bool value, and
you are attempting to return '1' from a query as "true", the result is incorrectly converted to a
numeric (i.e. floating point) type by the default Oracle binding. However, it is possible to force a
specific type (and column order) for each return column, using the following syntax:

SELECT COLUMN2 :#l<type>, COLUMN2 :#2<type> FROM ...

The number after the '#' character determines the column number for this result column. The
above statement returns them in the order they are declared. The 'type' in angle brackets
determines how the column is bound. The following set of types is supported:

<char [XXX]>
<double>
<float>
<int>
<bigint>
<ubigint>
<unsigned>
<short>
<long>

<raw [XXX]>
<raw_long>
<timestamp>
<varchar long>

If you cannot get an import to load correctly because of type errors, try using a suitable type from
the list above for the column which is not working. For example, to return a product name and a
bool 'true' from a table ProductisActive, we need an integer type for the bool property value:

SELECT Name, 1 :#<int> FROM ProductIsActive

Importing objects and date/times
Special processing occurs when importing to object and date/time properties.

e For Object columns in a property, the SQL result must be a string column, and this is
looked-up in the name property of the type to find the instance of the object. If the
instance is not found, then it will be skipped, unless the mapping is to a name property for
the import base type, and the "insert new" flag is set, in which case a new object instance of
that type will be created.

24

Configuration

e For Time columns in a property, the importer assumes that the column in the results will be
readable as a datetime (otl_var_dbtype = 8), and will be in UTC. If this is not so, convert the
column within your SQL statement, for example:

CAST (SWITCHOFFSET (datecolumn, '+00:00') AS DATETIME)

Calling stored procedures
In SQL Server connections, you can use the ODBC call markup, and pass parameters too, in your

query.

{ call dbo.MyStoredProcedure([[bound property]], [[bound propertyl]) }

Execution conditions

The final part of configuring an import is to set the execution conditions. There are a number of
options, which can be combined as required. Check the box next to each method you want to use
to trigger execution, and then fill in any parameters for that method.

Execute

[¥] every 5| |r'r1ir|utn.=-_r. -

seconds

|| test for changes with minutes |

hours
days

[skip test once time in 0

* Periodic execution: the query is executed at regular intervals, specified in seconds, minutes,
hours or days.

° An optional test query can be specified, which should return a single row with a single
string column. This should be a "hash" or sequence number used to detect changes
to the database. The service records the last value returned by the test, and if it is the
same as the last time it was executed, the import is skipped. Typically this query will
either use some sort of binary table hash, or a grouped maximum of some change

management column on the table.

25

Configuration

° If the test query uses a hash function, then there may be a small chance of a hash
collision, where the data changes but the hash does not. The test can be skipped
occasionally to get around hash collisions.

» At given times during each day: a list of times are specified in 24-hour clock, in the local
time zone.

» When any of the bound properties change: the query is executed when any property
included in the import query definition changes, including inserts and deletes.

» When another trigger property changes: you can specify any other property of the import
type. When a row changes, or is inserted or deleted, the query is executed.

All queries are also executed at startup of the database specific service.

When a bound query is triggered by a property change, it is executed once for each of the import
type object instances in the changed property rows.

When a bound query is triggered by any other method, it is executed once for each current
object instance of the import type in the SmartSpace application data.

When an unbound query is triggered, it is executed once.

Tracing
The following platform monitoring streams are available:
» rdb: Messages about basic functionality such as initialization of the services

» rdb_query: Messages about each query execution, including the statements executed, and
any application data errors.

 rdb_exception: Errors encountered during execution of SQL queries.

Trace parameters can be set using the ubisense_configuration_client application. The command

ubisense configuration client set <parameter name> <parameter value>

sets the configuration parameter <parameter name> to the value <parameter value>.

For example, use the command:

26

Configuration

ubisense configuration client set platform monitor rdb:rdb query:rdb
exception

to enable the three monitoring streams and then restart the RDBMS services.

27

Deployment tool

The RDBMS map feature comes with a deployment tool which can be used to save and load
relational database imports and exports to/from a file. The tool can be used to move
configuration from integration to production, or the reverse.

E:\temp\> ubisense relational database config.exe

You need to specify a mode

Usage: ubisense relational database config.exe export [OPTIONS]
or: ubisense relational database config.exe import [OPTIONS]

Export and import relational database integration definitions.

OPTIONS
-c, --clear Remove configuration not in the input
-i, --input <input> The input file
-0, —--output <output> The output file
--help Display this help and exit
--version Display version information and exit

In export mode, the tool writes all current relational database definitions to the output file (or the
standard output if not specified). The output is a JSON format file, and can be edited with a text
editor if needed. Definitions include databases, imports and exports, and all their properties.

In import mode, the tool reads the input file (or the standard input if not specified) and applies
the definitions to the current relational database configuration, updating matching existing
configuration. If the -c option is given, it also removes any other databases, imports and exports
not in the current input.

For example, to save the configuration to file defs.js:

ubisense relational database config.exe export -o defs.js

To load the configuration from defs.js, clearing any existing configuration:

ubisense relational database config.exe import -i defs.js -c

To get the tool, run Application Manager, click DOWNLOADABLES, and select Application
integration > RDBMS admin tools > ubisense_relational_database_config.exe. Click Download.

28

	Introduction to RDBMS map
	Features
	Database connections
	SQL Server
	Oracle

	Exporting
	Exporting from application data to a database connection
	Binding columns into queries
	Scheduled execution

	Importing
	Importing from a database connection to application data
	Multiple properties per query
	Bound import queries
	Controlling the insertion and removal of rows
	Creating/deleting objects
	Scheduling execution

	Installation
	Creating a Database with SQL Server
	Installing the ODBC Driver for SQL Server on Windows
	Installing the ODBC client for SQL Server on Linux

	Creating a Database with Oracle
	Installing the Oracle Client on Windows
	Oracle Client
	Microsoft Visual C++ Redistributable
	Disabling Automatic Diagnostic Repository

	Installing the Oracle Client on Linux
	Disabling Automatic Diagnostic Repository

	Configuration
	Background concepts
	Database connections
	Creating a connection
	Testing a connection
	Editing a connection
	Deleting a connection
	Connection examples

	Filtering imports and exports by type and property
	Exports
	Creating, editing and deleting
	Export editor
	The query editor
	Scheduling exports
	Export errors

	Imports
	Creating, editing and deleting
	Import editor

	Tracing

	Deployment tool

