
SmartSpace
Automated Failover Support
For version 3.3

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: http://www.ubisense.net.

http://www.ubisense.net/

Copyright © 2018, Ubisense Limited 2014 - 2018. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from
Ubisense at the following address:

Ubisense Limited

St Andrew’s House

St Andrew’s Road

Cambridge CB4 1DL

United Kingdom

Tel: +44 (0)1223 535170

WWW: http://www.ubisense.net

All contents of this document are subject to change without notice and do not
represent a commitment on the part of Ubisense. Reasonable effort is made to ensure
the accuracy of the information contained in the document. However, due to on-going
product improvements and revisions, Ubisense and its subsidiaries do not warrant the
accuracy of this information and cannot accept responsibility for errors or omissions
that may be contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.net/

Page i

Contents

Contents i

Ubisense Failover 2

The Two Machine Setup 2

Extending the Setup to 2N Machines 3

The reliable networking assumption, errors and precautions 4

Network isolation 4

Network partitioning 5

Precautions 5

Implementation: the binary exclusion protocol and state machine 5

Using the ubisense_failover_control service 7

Parameters 7

Platforms 9

Logging 9

Status reporting and control files 9

Installing Failover 10

Installing Failover on Windows 11

Installing on 2N Machines 13

Installing Failover on Linux 14

Installing on 2N Machines 16

Example Linux init.d script for ubisense_failover_control 17

Example Linux systemd scripts for ubisense_failover_control 20

Failover configuration example 22

What Happens when the Example Runs 22

Manually Switching between Active and Standby 23

Failing over when Active Goes Down 24

Bringing a Single Machine Down for Maintenance or OS Patching 24

Hot Backup: Taking Scheduled Dataset Backups while the System is Live 25

Software Version: 3.3

1

Ubisense Failover

Ubisense Failover
A common Ubisense failover scenario is the ‘two machine’ setup. In the two machine setup at
any one time one of the machines is the active machine and the other the standby machine. If
the active machine stops or fails, the standby machine takes over. But it is important to ensure
that both machines do not become active at the same time.

The ubisense_failover_control service implements a protocol between two machines to make
them work in a two machine setup, controlling the other Ubisense services on both machines,
and minimizing the likelihood of both machines simultaneously becoming active.

This document describes how the ubisense_failover_control service works, and describes how
to set it up to provide failover for a small system, implement scheduled backups in the live
system, and extend the failover support to a large system using 2N separate machines.

The Two Machine Setup
The two machine setup looks like the diagram below. Two similar machines, using standard
operating systems, and whatever VM / HW configuration is required, are run in tandem. Each
machine runs the ubisense_failover_control service. Each instance of the service controls other
Ubisense services and talks to the other instance, using a binary exclusion protocol. The binary
exclusion protocol ensures that one machine is running the ‘active’ Ubisense services (e.g. the
core server, local controller, and replication sender), and the other machine is running the
‘standby’ Ubisense services (e.g. the replication receiver). The Ubisense local controller service
on the active machine will control multiple Ubisense application services as specified by the
Ubisense core server’s service administration schema (seeUbisense Architecture and Protocols for
details).

2

Ubisense Failover

Figure: A two machine setup running a Ubisense system. At any one time, one machine is in the
active state, and the other machine is in the standby state.

Extending the Setup to 2N Machines
In a two machine setup, the entire set of active Ubisense application services is running on one
single machine (the active machine) at any one time.

But we might want to run across multiple machines for increased throughput in a large system,
or we might want to run our Ubisense system on more than one operating system, for example
Linux for the real-time control elements of the system and Windows for the web visibility
elements. In this case we simply repeat the two machine setup multiple times. In this case for
every pair of machines the active services will include the local controller service (so that
Ubisense application services can be started and stopped), and one pair will also be chosen to
host the Ubisense core server.

In this way we can build up a large system, possibly with different operating systems, by
creating N instances of the two machine setup.

3

Ubisense Failover

This approach can be especially convenient combined with a VM platform. In this case, it is easy
to set up 2N virtual machines mapped onto a suitable set of underlying hardware resources.

Figure: Multiple two-machine setups can be combined to cover a large system. In this case we
have three active machines, each of which has a standby machine.

The reliable networking assumption, errors and precautions
Like all binary failover mechanisms, the ubisense_failover_control service assumes that there is a
reliable interconnect between it and its counterpart on the other machine. In the case of
ubisense_failover_control this interconnect is just the standard Ethernet networking between
the two machines. This means that the networking between the machines is the most critical
component in the failover support process; intermittent failure of networking can result in error
cases for the failover protocol.

Network isolation

The first case to consider is the temporary failure of networking on the currently active
machine, leading to unintended network isolation. To the standby machine, this will look just
like a failure of the active machine, so the standby machine will take over. If the networking
then recovers on the isolated machine, both machines will incorrectly be active. The protocol
will quickly recover from this error case (both machines will transition to the standby state, and

4

Ubisense Failover

then one of them will become active) but during the brief ‘both active’ period there may be
incorrect system behavior.

Network partitioning

A more serious problem could arise if networking between the active and standby machines
fails, but both machines can still talk to client machines, sensor networks and external systems. In
this case, each side of the failover protocol will assume that the other side is down, and so both
machines will become active. This would be a serious failure: because both machines would still
be able to talk to users of the Ubisense services, this could cause incorrect system behavior over
a long period.

Precautions

To avoid these failure cases the following precautions are advised: when two machines are
configured in a two-machine setup they should have a reliable network between them; when
running VMs, when a VM network interface fails it is better to reboot the machine (allowing a
standby to take over) than to attempt to recover from the network interface failure.

Implementation: the binary exclusion protocol and state machine
In the binary exclusion protocol, each side has a state consisting of two fields:

l Local status, which can be one of Running, Ready or Stopped. The meaning of the states
is:

o Running: this machine is the active Ubisense machine

o Ready: this machine is the standby Ubisense machine

o Stopped: at user request, this machine won’t run any Ubisense services

l Remote status, which can be one of Running, Ready, Stopped, Waiting, or Timeout. The
meanings of the states are as above, plus:

o Waiting: this side of the protocol has just started, and we are waiting to hear from
the remote side

o Timeout: we have failed to hear from the remote side for long enough that we have
exceeded some timeout.

Each side of the protocol repeatedly sends UDP packet containing its current Local status to the
other side, which uses the received value to update its view of Remote status, using the Waiting
and Timeout values to cover cases where it hasn’t (recently) received any value.

5

Ubisense Failover

The basic operation is simple:

l Normally, if the remote machine is Running, the local machine will be Ready, and vice
versa.

l If the remote machine is Stopped or Timeout, the local machine will be Running.

l The two machines should never both be Running.

l If both machines are Ready (e.g. at start up time) the machine with the lowest IP address
will transition to Running.

In detail, the operation is decided by this procedure, where the LOCAL STATUS and
REMOTE STATUS define a row in the table below:

1. Ensure that the correct services are Up or Down according to the values of the ACTIVE
SERVICES and STANDBY SERVICES columns below.

2. If the Local IP is less than the Remote IP, set Local status in the way described in LOW IP
STATE CHANGE, otherwise set it in the way described in HIGH IP STATE CHANGE.

3. If there is a value specified for HEALTH REPORT then output it (see Logging for
information on the destination of health reports).

When states are: Applicable operations are:

LOCAL
STATUS

REMOTE
STATUS

ACTIVE
SERVICES

STANDBY
SERVICES

LOW IP STATE
CHANGE

HIGH IP STATE
CHANGE

HEALTH
REPORT

Running Running Down Down Ready Ready ERROR

Running Stopped Up Down No change No change NONE

Running Ready Up Down No change No change NONE

Running Waiting Down Down No change No change NONE

Running Timeout Up Down No change No change WARNING

Stopped Running Down Down No change No change NONE

Stopped Stopped Down Down No change No change WARNING

Stopped Ready Down Down No change No change NONE

6

Ubisense Failover

When states are: Applicable operations are:

LOCAL
STATUS

REMOTE
STATUS

ACTIVE
SERVICES

STANDBY
SERVICES

LOW IP STATE
CHANGE

HIGH IP STATE
CHANGE

HEALTH
REPORT

Stopped Waiting Down Down No change No change NONE

Stopped Timeout Down Down No change No change WARNING

Ready Running Down Up No change No change NONE

Ready Stopped Down Down Running Running NONE

Ready Ready Down Down Running No change NONE

Ready Waiting Down Down No change No change NONE

Ready Timeout Down Down Running Running WARNING

Using the ubisense_failover_control service

Parameters

The parameters for the service are set locally using one of these mechanisms:

l An entry in the file platform.conf located in this folder:

o Windows: <installdir>\bin

o Linux: /etc/ubisense

l On Windows, string value (with the name of the parameter) in the registry key
HKLM\Software\Ubisense 2.1\Platform\Config

l An entry in the file platform.conf in the folder where the service executable is executed

The following are the failover service parameters:

Parameter name Description Platform Default value

ufc_local_ip The IP address of the network interface to
use on the local machine

Both 0.0.0.0

ufc_remote_ip The IP address to send to on the remote
machine

Both 0.0.0.0

7

Ubisense Failover

Parameter name Description Platform Default value

ufc_port The port to bind to on the local machine
(and to send to on the remote machine)

Both 27001

ufc_timeout The time in seconds before the remote
machine is set to have status Timeout

Both 10

ufc_reboot_on_
error

Reboot the local machine if an error is
encountered when attempting to control
the other Ubisense services on the local
machine

Both 0

ufc_core Start the Ubisense core server on the local
machine when in the active state

Both 1

ufc_replication Start the replication sender on the local
machine when in the active state, and the
replication receiver on the local machine
when in the standby state. If the machines
are using some kind of shared storage
mechanism in order to ensure that they
refer to the same data, then replication is
not required and this can be set to 0.

Both 1

ufc_test_mode Do not actually start or stop any services,
but just print out which services would be
started or stopped at any time

Both 1

ufc_bin Location of the other Ubisense service
executables on the local machine

Linux
only

/home/platform/bin

The following are other parameters relevant to failover operation.

Parameter name Description

controller_node_name The name of the computing node to be used by the local
controller. This provides the mechanism for the two machines in the
two machine setup to identify themselves as the same machine, and
always needs to be set when implementing failover.

replication_directory The path of the directory where Ubisense persistent services will
write their replication files. This only needs to be set when using

8

Ubisense Failover

Parameter name Description

Ubisense Replication, that is when the parameter ufc_replication
above is set to 1.

replication_receiver_
address

The address of the machine to connect to when sending replication
data. This only needs to be set when using Ubisense Replication
services, that is when the parameter ufc_replication above is set to
1.

Platforms

The ubisense_failover_control service runs on Linux and Windows, and implements the behavior
described in the previous section.

Logging

The service logs important state changes and error conditions using the event log features of
Windows, or the syslog features of Linux.

Status reporting and control files

The service provides a status reporting and control mechanism based on files in addition to the
logging provided by Windows or Linux.

In the Ubisense dataset directory, the service creates a status file, which is one of:

l ufc_running: this machine is the active machine in the two machine setup

l ufc_ready: this machine is the standby machine in the two machine setup

l ufc_stopped: at user request, this machine is neither active or on standby, and all Ubisense
services (apart from the failover service itself) are stopped.

And in the same directory, the user may request that the service transition state to Stopped by
creating the file ufc_stop. The user can retract that request by removing the ufc_stop file again.

Software Version: 3.3

9

Installing Failover

Installing Failover
The following information guides you through the steps required to install Ubisense Failover:

l Installing Failover on Windows

l Installing Failover on Linux

For information on hardware and software requirements, and for general information on
installing SmartSpace, see the SmartSpace Installation Manual.

If you are also using Ubisense Replication, seethe Ubisense Replication Support guide for further
information on its installation and configuration.

Software Version: 3.3

10

Installing Failover on Windows

Installing Failover on Windows
Follow these instructions to install and deploy Failover on a single pair of Windows machines.
For information on installing Failover across several pairs of Windows machines, see Installing
on 2N Machines.

On each machine:

1. Install the Ubisense servers.
The server software installer, UbisenseServers.msi, is in the servers\windows directory of
your SmartSpace distribution directory.
For further information on installing SmartSpace software on Windows machines, see
SmartSpace Installation guide.

2. Install Replication (if required).
The replication software installer, UbisenseReplication.msi, is in the clients\windows
directory of your SmartSpace distribution directory.
For further information on installing the replication software on Windows machines, see
the SmartSpace Replication Support guide.

3. Install Failover.
The failover software installer, UbisenseFailover.msi, is in the servers\windows directory
of your SmartSpace distribution directory.

4. Ensure that the Ubisense servers and replication are not restarted on reboot.

a. Run Platform Control.

b. In Services, ensure that start services automatically on reboot is unchecked.

c. Click Apply.

The services will now be controlled by the failover control service. By visiting
Control Panel\All Control Panel Items\Administrative Tools\Services it should be
possible to confirm that the services have startup type Manual.

5. Ensure that the failover service is restarted on reboot.
By visiting Control Panel\All Control Panel Items\Administrative Tools\Services set the
service UbisenseFailoverControl to have startup type Automatic. This will ensure that the
failover service is started when the machine starts up. By using the Recovery tab, it is also
possible to restart the service if it fails.

11

Installing Failover on Windows

6. Configure Failover using platform.conf or the registry.
Referring to the table below and using the examples in Failover configuration example,
configure the failover service.
Ensure that the two machines have identical configurations apart from IP addresses where
the local IP on one machine is the remote IP on the other, and vice versa.

The following are the failover service parameters:

Parameter name Description Default
value

ufc_local_ip The IP address of the network interface to use on the local
machine

0.0.0.0

ufc_remote_ip The IP address to send to on the remote machine 0.0.0.0

ufc_port The port to bind to on the local machine (and to send to on
the remote machine)

27001

ufc_timeout The time in seconds before the remote machine is set to have
status Timeout

10

ufc_reboot_on_
error

Reboot the local machine if an error is encountered when
attempting to control the other Ubisense services on the local
machine

0

ufc_core Start the Ubisense core server on the local machine when in the
active state

1

ufc_replication Start the replication sender on the local machine when in the
active state, and the replication receiver on the local machine
when in the standby state. If the machines are using some kind
of shared storage mechanism in order to ensure that they refer
to the same data, then replication is not required and this can
be set to 0.

1

ufc_test_mode Do not actually start or stop any services, but just print out
which services would be started or stopped at any time

1

The following are other parameters relevant to failover operation.

12

Installing Failover on Windows

Parameter name Description

controller_node_name The name of the computing node to be used by the local controller.
This provides the mechanism for the two machines in the two
machine setup to identify themselves as the same machine, and
always needs to be set when implementing failover.

replication_directory The path of the directory where Ubisense persistent services will
write their replication files. This only needs to be set when using
Ubisense Replication, that is when the parameter ufc_replication
above is set to 1.

replication_receiver_
address

The address of the machine to connect to when sending replication
data. This only needs to be set when using Ubisense Replication
services, that is when the parameter ufc_replication above is set to 1.

7. Start Failover and ensure the configuration is working correctly.
After the configuration has been set up appropriately, the failover service can be started.

Installing on 2N Machines
When installing Failover over multiple pairs of machines, each pair of machines should be
configured as described above with the following exceptions:

l Only one machine pair should be configured to host the core server, so in step 4 the
parameter ufc_core should be set to zero in the platform.conf files for all the other
machine pairs

l Each machine pair needs a new controller name. For example, if there are N pairs, then
each pair could have controller_node_name set to linux_server_1, … , linux_server_N

Software Version: 3.3

13

Installing Failover on Linux

Installing Failover on Linux
Follow these instructions to install and deploy Failover on a single pair of Linux machines each
running the core server and local controller. For information on installing Failover across several
pairs of Linux machines, see Installing on 2N Machines.

On each machine:

1. Copy the servers, replication (if required) and failover control to a bin directory.
You can find the executables in the following locations in your SmartSpace distribution
directory:

servers servers/linux/ubisense_core_server
servers/linux/ubisense_local_control

replication tools/linux/ubisense_replication_sender
tools/linux/ubisense_replication_receiver

failover servers/linux/ubisense_failover_control

2. Create a service management script for the failover service only.
Create a suitable script for your particular Linux platform that will provide some
start/stop/status support for the failover service. This service runs as a daemon, and so
most standard techniques should be applicable. A common script is provided in Example
Linux init.d script for ubisense_failover_control.
For Red Hat® Linux, and other Linux platforms using systemd, see Example Linux systemd
scripts for ubisense_failover_control for information on configuring support for the
failover service.

3. Ensure that the service management script is run on machine restart.
Using a suitable method for your Linux platform, ensure that the failover service is started
on machine restart. On most platforms, it should also be possible to restart the failover
service on failure.

4. Configure Failover using platform.conf.
Referring to the table below and using the examples in Failover configuration example,
configure the failover service.
Ensure that the two machines have identical configurations apart from IP addresses where
the local IP on one machine is the remote IP on the other, and vice versa.

14

Installing Failover on Linux

The following are the failover service parameters:

Parameter name Description Platform Default value

ufc_local_ip The IP address of the network interface to
use on the local machine

Both 0.0.0.0

ufc_remote_ip The IP address to send to on the remote
machine

Both 0.0.0.0

ufc_port The port to bind to on the local machine
(and to send to on the remote machine)

Both 27001

ufc_timeout The time in seconds before the remote
machine is set to have status Timeout

Both 10

ufc_reboot_on_
error

Reboot the local machine if an error is
encountered when attempting to control
the other Ubisense services on the local
machine

Both 0

ufc_core Start the Ubisense core server on the local
machine when in the active state

Both 1

ufc_replication Start the replication sender on the local
machine when in the active state, and the
replication receiver on the local machine
when in the standby state. If the machines
are using some kind of shared storage
mechanism in order to ensure that they
refer to the same data, then replication is
not required and this can be set to 0.

Both 1

ufc_test_mode Do not actually start or stop any services,
but just print out which services would be
started or stopped at any time

Both 1

ufc_bin Location of the other Ubisense service
executables on the local machine

Linux
only

/home/platform/bin

The following are other parameters relevant to failover operation.

15

Installing Failover on Linux

Parameter name Description

controller_node_name The name of the computing node to be used by the local
controller. This provides the mechanism for the two machines in the
two machine setup to identify themselves as the same machine, and
always needs to be set when implementing failover.

replication_directory The path of the directory where Ubisense persistent services will
write their replication files. This only needs to be set when using
Ubisense Replication, that is when the parameter ufc_replication
above is set to 1.

replication_receiver_
address

The address of the machine to connect to when sending replication
data. This only needs to be set when using Ubisense Replication
services, that is when the parameter ufc_replication above is set to
1.

5. Start Failover and ensure the configuration is working correctly.
After the configuration has been set up appropriately, the failover service can be started.

Installing on 2N Machines
When installing Failover over multiple pairs of machines, each pair of machines should be
configured as described above with the following exceptions:

l Only one machine pair should be configured to host the core server, so in step 4 the
parameter ufc_core should be set to zero in the platform.conf files for all the other
machine pairs

l Each machine pair needs a new controller name. For example, if there are N pairs, then
each pair could have controller_node_name set to linux_server_1, … , linux_server_N

Software Version: 3.3

16

Example Linux init.d script for ubisense_failover_control

Example Linux init.d script for ubisense_
failover_control
This script is a commonly-used init script template, converted for running the Ubisense failover
control service. It assumes the existence of a pseudo-user platform, which will run the Ubisense
platform. It also needs to be configured for your platform, by setting PLATFORM_USER,
UBISENSE_FAILOVER, and UCONFIG appropriately.

#!/bin/bash
Init file for Ubisense failover control server
chkconfig: 345 98 02
description: Ubisense failover control for linux
processname: ubisense_failover_control
config: /etc/ubisense.conf

source function library

if [-e /etc/rc.d/init.d/functions]
then

. /etc/rc.d/init.d/functions
else
steal status() from /etc/rc.d/init.d/functions on a RH box
status() {

local base=${1##*/}
local pid

Test syntax.
if ["$#" = 0] ; then

echo $"Usage: status {program}"
return 1

fi

First try "pidof"
pid=`pidof -o $$ -o $PPID -o %PPID -x $1 || \

pidof -o $$ -o $PPID -o %PPID -x ${base}`
if [-n "$pid"]; then

echo $"${base} (pid $pid) is running..."
return 0

fi

17

Example Linux init.d script for ubisense_failover_control

Next try "/var/run/*.pid" files
if [-f /var/run/${base}.pid] ; then

read pid < /var/run/${base}.pid
if [-n "$pid"]; then

echo $"${base} dead but pid file exists"
return 1

fi
fi
See if /var/lock/subsys/${base} exists
if [-f /var/lock/subsys/${base}]; then

echo $"${base} dead but subsys locked"
return 2

fi
echo $"${base} is stopped"
return 3

}
fi

pull in sysconfig settings. NB this is configuring sysconfig,
not Ubisense
[-f /etc/ubisense.conf] && . /etc/ubisense.conf

local configuration – change to reflect pseudo user and
location of executable
PLATFORM_USER=${PLATFORM_USER:-platform}
UBISENSE_FAILOVER=/home/platform/bin/ubisense_failover_control
export UCONFIG=/etc/ubisense/platform.conf

RETVAL=0
prog="ubisense"

start()
{

echo -n $"Starting UBISENSE_FAILOVER:"
if [-e /etc/rc.d/init.d/functions]
then

daemon --check UBISENSE_FAILOVER --user=platform
${UBISENSE_FAILOVER}

else
startproc -u platform ${UBISENSE_FAILOVER}

fi
touch /var/lock/subsys/UBISENSE_FAILOVER

18

Example Linux init.d script for ubisense_failover_control

echo
}

stop()
{

echo -n $"Stopping UBISENSE_FAILOVER:"
if [-e /etc/rc.d/init.d/functions]

then
killproc UBISENSE_FAILOVER

else
killproc ${UBISENSE_FAILOVER}

fi
rm -f /var/lock/subsys/UBISENSE_FAILOVER

echo
}

case "$1" in
start)

start
;;

stop)
stop
;;

restart)
stop

start
;;

status)
status UBISENSE_FAILOVER

;;
*)

echo $"Usage: $0 {start|stop|restart|status}"
RETVAL=1

esac
exit $RETVAL

Software Version: 3.3

19

Example Linux systemd scripts for ubisense_failover_control

Example Linux systemd scripts for ubisense_
failover_control
The following example illustrates the use of sysemd scripts for failover on a Red Hat® Linux
machine.

The instructions assume the failover executable (ubisense_failover_control) is in
/home/platform/bin/i586_linux. If this is not the case, the service file (ubisense_
failover.service) will have to be updated to reflect the location of the executable.

1. Add a target file ubisense_service.target in /etc/systemd/system containing the
following:

[Unit]
Description=ubisense_service Target
Requires=multi-user.target
After=multi-user.target
AllowIsolate=yes

2. Run the following commands:

systemctl list-units --type service
systemctl daemon-reload
systemctl enable ubisense_service.target
systemctl isolate ubisense_service.target
ln -sf /etc/systemd/system/ubisense_service.target
/etc/systemd/system/default.target.wants/

3. Reboot the machine.

4. Check the status of the target using the command below to make sure the target is active
and running:

systemctl list-units --type target

5. Add a service file ubisense_failover.service in /etc/systemd/system containing the
following:

[Unit]
Description=Daemon for ubisense_failover_service
After=multi-user.target

20

Example Linux systemd scripts for ubisense_failover_control

[Service]
Type=forking
ExecStart=/home/platform/bin/i586_linux/ubisense_failover_
control

[Install]
WantedBy=ubisense_service.target

6. Run the following commands:

systemctl daemon-reload
systemctl enable ubisense_failover.service

7. Reboot the machine.

8. To list the status of the services run the following command:

systemctl list-units --type service

Software Version: 3.3

21

Failover configuration example

Failover configuration example
In this example two Linux machines run an entire dataset with failover in a two machine setup.

l The IP addresses of the machines are 10.42.1.40 and 10.42.1.106.

l The machines both have the following Ubisense executables installed in their default
location (/home/platform/bin): ubisense_failover_control, ubisense_core_server,
ubisense_local_control, ubisense_replication_sender, and ubisense_replication_receiver

l The ubisense_failover_control service is set up to run via a standard init.d script.

l The machines are both configured using the /etc/ubisense/platform.conf file, with
contents as below:

10.42.1.40 platform.conf file

controller_node_name: linux_server
replication_directory: /home/platform/replication
replication_receiver_address: 10.42.1.106
ufc_local_ip: 10.42.1.40
ufc_remote_ip: 10.42.1.106
ufc_test_mode: 0

10.42.1.106 platform.conf file

controller_node_name: linux_server
replication_directory: /home/platform/replication
replication_receiver_address: 10.42.1.40
ufc_local_ip: 10.42.1.106
ufc_remote_ip: 10.42.1.40
ufc_test_mode: 0

What Happens when the Example Runs
When the machines both start up (or both have the failover service started), the following
sequence of behavior occurs:

10.42.1.40 10.42.1.106

In state Ready (remote = Waiting) In state Ready (remote = Waiting)

In state Ready (remote = Ready) In state Ready (remote = Ready)

22

Failover configuration example

10.42.1.40 10.42.1.106

Because this machine has the lower IP
address

Start ubisense_core_server,
ubisense_local_control,
ubisense_replication_sender

In state Running (remote = Ready) In state Ready (remote = Running)

Start ubisense_replication_receiver

In state Running (remote = Ready) In state Ready (remote = Running)

This is the stable state with 10.42.1.40 active and 10.42.1.106 in standby, and, because replication
is enabled, the entire dataset for 10.42.1.40 is replicated in the dataset directory for 10.42.1.106.

Looking at the dataset directories on each machine, 10.42.1.40 contains the file ufc_running,
and 10.42.1.106 contains the file ufc_ready.

Manually Switching between Active and Standby
Now suppose we touch the file ufc_stop in the dataset directory on 10.42.1.40. We get this
sequence of events and actions:

10.42.1.40 10.42.1.106

In state Running (remote = Ready) In state Ready (remote = Running)

In state Ready (remote = Ready) In state Ready (remote = Ready)

Stop ubisense_core_server, ubisense_local_
control, ubisense_replication_sender

In state Stopped (remote = Ready) In state Ready (remote = Stopped)

Stop ubisense_replication_receiver
Start ubisense_core_server, ubisense_local_
control, ubisense_replication_sender

In state Stopped (remote = Running) In state Running (remote = Stopped)

23

Failover configuration example

The dataset is now running on 10.42.1.106. If we now remove the ufc_stop file on 10.42.1.40,
the failover service will change state to Ready, and start ubisense_replication_receiver, which
was the original stable state, but with the machines reversed. So by using the ufc_stop file, we
can instigate an immediate switchover between the two machines.

Failing over when Active Goes Down
If the Running machine now is powered down, the standby machine will detect that remote =
Timeout, and take over as the active machine. Suppose 10.42.1.40 is the active machine, and it
fails, then we get this sequence of actions:

10.42.1.40 10.42.1.106

In state Running (remote = Ready) In state Ready (remote = Running)

MACHINE FAILS

In state Ready (remote = Running)

After ufc_timeout seconds

In state Ready (remote = Timeout)

Stop ubisense_replication_receiver
Start ubisense_core_server, ubisense_local_
control, ubisense_replication_sender

In state Stopped (remote = Running) In state Running (remote = Timeout)

Bringing a Single Machine Down for Maintenance or OS Patching
As part of a standard system administration maintenance process, machines will be periodically
upgraded to new OS versions, be assigned new hardware, or otherwise maintained. This
normally requires the machine concerned to be taken out of service. In these cases, as long as a
single machine in the pair is taken out of service at a time, failover will ensure that the
application will continue to run on the other machine.

The most graceful way of achieving this is to use the ufc_stop request, as above, to request that
the machine communicate its stopped status to its partner. This will avoid a wait of ufc_timeout
seconds before the standby machine takes over, and prevent the standby machine from
logging warnings.

24

Failover configuration example

Hot Backup: Taking Scheduled Dataset Backups while the System
is Live
Of course, failover of this kind is not a protection against disasters that take out an entire
machine room, or user errors that delete important parts of a dataset. To mitigate these
problems it is still necessary to take frequent backups.

The easiest guaranteed-correct way to do this is to ensure that the dataset files are not being
written during the backup. In a two machine setup that includes replication this is easy to do by
briefly stopping the replication receiver on the standby machine, copying the dataset backup,
and starting the replication receiver again.

On Linux platforms this can be done using this procedure:

1. Change to the dataset directory.

2. If there is a file ufc_ready, indicating that the machine is in standby state, then

a. Create the file ufc_stop, to request that the machine transition to state Stopped

b. Wait for the file ufc_stopped to appear, indicating that the machine is Stopped

c. Create the backup by copying the contents of the dataset directory to a file

d. Remove the file ufc_stop.

3. Finally, copy the backup file to some suitable remote location.

As a Linux shell script, this looks like:

cd /home/platform/dataset
if [-f ufc_ready] ; then

echo "stopping standby services"
touch ufc_stop
while [! -f ufc_stopped] ; do

echo "waiting to stop"
sleep 1

done
echo "backing up dataset"
tar czf ../backup.tgz .
echo "starting standby services"
rm ufc_stop
echo "moving backup to a remote location"
Move the file ../backup.tgz to a remote location

fi

25

Failover configuration example

This script can be installed on both machines and run via a cron job at an appropriate interval.
On the active machine the script will do nothing, and on the standby machine, the script will
briefly stop failover while creating a backup, and then move the backup to some shared remote
storage.

26

	Contents
	Ubisense Failover
	The Two Machine Setup
	Extending the Setup to 2N Machines
	The reliable networking assumption, errors and precautions
	Network isolation
	Network partitioning
	Precautions

	Implementation: the binary exclusion protocol and state machine
	Using the ubisense_failover_control service
	Parameters
	Platforms
	Logging
	Status reporting and control files

	Installing Failover
	Installing Failover on Windows
	Installing on 2N Machines

	Installing Failover on Linux
	Installing on 2N Machines

	Example Linux init.d script for ubisense_failover_control
	Example Linux systemd scripts for ubisense_failover_control
	Failover configuration example
	What Happens when the Example Runs
	Manually Switching between Active and Standby
	Failing over when Active Goes Down
	Bringing a Single Machine Down for Maintenance or OS Patching
	Hot Backup: Taking Scheduled Dataset Backups while the System is Live

