
SmartSpace®
Location Rules Configuration
Guide
From version 3.6 SP4

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: https://www.ubisense.com

https://www.ubisense.com/


Copyright © 2023, Ubisense Limited 2014 - 2023. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from Ubisense
at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.com

All contents of this document are subject to change without notice and do not represent
a commitment on the part of Ubisense. Reasonable effort is made to ensure the accuracy
of the information contained in the document. However, due to on-going product
improvements and revisions, Ubisense and its subsidiaries do not warrant the accuracy of
this information and cannot accept responsibility for errors or omissions that may be
contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AngleID® are registered trademarks
of Ubisense Ltd. DIMENSION4™ and UB-Tag™ are trademarks of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/


Page i

Contents

Location rules 1

Overview 1

Audience 2

Prerequisites 2

Installation 2

SmartSpace Config 2

Automated tag association 2

Creating a Tag Association Point 2

Parameters for Tag Association Points 5

Support for Multiple Tag Positions 7

Support for Tag Types 7

Assertions for Tag Association Points 8

Web Site Operation 9

Association Status Messages 14

Data Warning Timeout 15

URL to a Specific Association Point 15

Robust assertion points 18

Configuring Assertion Points 18

Parameters for Assertion Areas 23

Assertions for Assertion Areas 25

Advanced use 25

Details of Assertion Operation 25

Parking 27

Location Snapping 27

Parameters for Parking Areas 28

Multiple Parking Areas 28

Layout of Parking Bays 29

Driven objects 30



Page ii

Configuring Driven Objects 30

Parameters for Driven Objects 32

Assertions for Driven Objects 34

Details of Driven Objects Operation 34

Example Layout Using “Alternates” 34

Stale Location Detection 37

Setting a Stale Timeout 37

Dynamically Setting Stale Timeouts 39

Removing Stale Object Locations 39

Parameters for Stale Location Detection 39

Assertions for Stale Location Detection 40

Location Removal Mechanism 41

Assertions for Location Removal 41

Example of Location Removal Use 41



Location rules

Location rules

Overview
This document describes the configuration of the features that make up the Location rules
component of SmartSpace.  The features described are:

Automated tag association

This allows a tag detected at a given location to be associated with an externally determined
candidate object, subject to conditions that make this association robust in a production
environment.  This includes the display of the status of an association point using a web browser.

Robust location

An assertion point detects when an object is located at a given place using strong evidence,
including distance and speed.  This allows the point to be robust to transient process errors in
production, such as carrying assets close to a gate location.

Parking bay snapping

Parking is an extension of robust assertion points, where the object is snapped into the given bay
while it satisfies the strong evidence.

Driven objects

This supports locating an object based on the location of another container object.  When the
container moves, the contained objects are carried along.  Various layout options are supported.

Stale location detection

When an object has an associated tag, and no sighting of that tag has been generated for a
configured time interval, an assertion is made that the object is “stale”.  This assertion is retracted
as soon as the tag is located again.

Location removal

The location removal feature is similar to tag removal and object deletion supported via assertions
in SmartSpace core.  Location removal allows an assertion to be made that causes the current
location of the object to be removed, and the assertion will be reset once this has been done.

1



Location rules

Audience
This guide should be read by those who will be setting up a SmartSpace system to use the
features of Location rules, or those who are maintaining a system that uses Location rules.

Prerequisites

Installation

Location rules is a licensed component of SmartSpace 3.2 and later. See SmartSpace Installation
on the Ubisense Documentation Portal for information on requirements and installation process. 
You will need a license for Location rules in order to install it.

The automatic association status web page is part of SmartSpace Web. See the installation
instructions for SmartSpace Web in SmartSpace Installation on the Ubisense Documentation
Portal for requirements and installation process.

SmartSpace Config

The configuration of Location rules features is done in the SmartSpace Config application. Use
the Ubisense Application Manager tool to download this application after the services have been
installed.

2



1



Automated tag association

Automated tag association
The automatic tag association feature operates by assigning a sequence of objects created from
an external source to tags detected at an association point, usually as the tag is attached to the
object during production. The candidate objects are provided to each association point using an
assertion which must be set in time for the tag to be attached, and is then automatically retracted
when the association has been made. We will discuss options for implementing this integration
process below.

The cycle of operation of an association point

Creating a Tag Association Point
The following steps are used to create and configure a tag association point.

1. If you haven’t already done so, set up a representation model for tag association points so
you can place them and see where they are placed. See Importing an object representation
and Adding a representation to a type on the Ubisense Documentation Portal for how to set
a representation on a type in SmartSpace Config. Make sure the representation is scaled to

2

../../../../../../Content/UserResources/BuildandCreate/SiteVisualization/model-import.htm#Importin2
../../../../../../Content/UserResources/BuildandCreate/SiteVisualization/assignreps/model-assignment.htm#Adding


Automated tag association

a suitable size, and the origin set appropriately.

2. Create an object for the tag association point. Using SmartSpace Config, under
TYPES/OBJECTS drag the Tag Association Point type into the right-hand pane. Double-click
<Create new object> from the Tag Association Point objects dialog. Enter the name of the
association point into the name field, and click Save.

Creating a new tag association point

3. Place the tag association point in the correct location on your site map. Using OBJECT
PLACEMENT, select the Tag Association Points type in the bottom left pane, and then drag
the association point instance onto the correct location in the map.

3



Automated tag association

Placing the tag association point: select Tag Association Point type

Placing the tag association point: dragging onto the map

4. Configure the parameters of the tag association point. In SERVICE PARAMETERS, select
Parking and tag auto-association. Drag the Tag Association Point type into the object

4



Automated tag association

browser and double-click the association point to display its parameters. Click Edit to
change them.

Parameters for a Tag association point

Note: You can set parameters for all instances of the Tag Association Point type by double-
clicking 'Tag Association Point' objects instead of a single instance. This will set values for
parameters which are not overridden for a specific object instance or sub-type.

Parameters for Tag Association Points
The following static parameters can be set for tag association points. They define configuration
that is not frequently changed during operation. For dynamic configuration and operational data,
see the assertions below.

accept associated

5



Automated tag association

If false, the tag association point will ignore any tags that have already been associated with
another object. If true, an associated tags will be considered for association provided it satisfies
all the other constraints.

activation distance

The detected tag must be within this distance of the association point in order to be considered
for association. The association will made when the tag has been seen the number of times
determined by the required readings parameter.

data warning timeout

How long to wait for a candidate object to be set for the association point, before the web page
will display a warning. Once a tag is detected at the association point, the status page will wait
this long for a candidate object, before it highlights the error. If this is set to 0 (the default) the
web page will not display a warning after a timeout.

exclusion distance

If other tags are located within this distance of the tag association point, they will block
association. For a tag to be considered for association, it must both be within the activation
distance and be the only tag within the exclusion distance.

Specifically, each time a different tag is seen within the exclusion distance, the tag reading count
for the current tag will be reset to zero. See required readings below.

height range

The tag must be located within this vertical distance of the tag association point in order to be
considered for association. Tags outside this range will be ignored.

required readings

In order to make association more robust to stray tags or tag sighting errors, the association
point will wait until it has seen the tag this many times within the activation distance and height
range before associating it to the candidate object.

sighting persistence

Extra tags will prevent association if their most recent sighting was inside the exclusion zone, and
is not older than this timeout. This means that if a tag A is seen inside the exclusion zone, it will
prevent association of any other tag B until either tag A is seen outside of the exclusion zone or
the sighting of A expires after the sighting persistence timeout.

tag position

6



Automated tag association

The tag will be placed at a given attachment point on the candidate object. This parameter defines
the offset of the tag from the origin of the object. It must be set to a tag position defined in the
TAG ASSOCIATION workspace of SmartSpace Config. If a different tag position is used for
different objects (for example different models of car) then this can be supported using the
property “sets tag position” as described below.

tag type

From version 3.4, a tag type (with type Tag Type) can be associated with an association point. This
parameter is set by choosing one of the currently-defined tag types from a drop-down list. (There
is no attempt to reinforce referential integrity so the tag type assigned here will not have a name if
the tag type is deleted from the system. Deleting a tag type is not an expected behavior in normal
datasets.) Use of this parameter is described in Support for Tag Types.

Support for Multiple Tag Positions

Different tag positions for different object types can be supported:

l by using the same name for the tag position, but defining the tag position differently for
each candidate object type; or

l by defining external integration logic or rules to set the “‘Tag Association Point’ sets tag
position ‘String’” assertion before the candidate object is set. See Assertions for Tag
Association Points.

For example, if Business Rules was licensed, the product could have a “model” property, and the
model could have a “tag position” property, and this position could be set for the association
point before the candidate object is set. Similar behavior could be achieved using an integration
API.

Support for Tag Types

From version 3.4, Tag Association Point objects can have an associated tag type, in which case
they will only assign tags that either have no type or have the exact same type. After assignment
they will ensure that the assigned tag now has the exact same type, so this mechanism can be
used to protect users from assigning inappropriate tags within a tag cycle, and to allow designers
to assign tag types (and hence tag battery monitoring and filter properties) automatically.

Assignment process

7



Automated tag association

Pre-assignment check: When a tag is ready to be associated, various properties of the tag are
checked (for example, the tag battery status is checked). At this stage, a new check has been
introduced on the tag type:

1. If the tag type of the Tag Association Point is undefined, the check is OK

2. If the tag type of the tag to be assigned is undefined, the check is OK

3. Otherwise, the check is OK if and only if the type of the Tag Association Point matches the
type of the tag to be assigned.

If the check is OK then the assignment is done (assuming no other check fails).

If the check is not OK then the assignment fails with the error message "tag has the wrong type"
and the following health monitoring counters are incremented:

l auto_association_bad_type

l auto_association_errors

Assignment actions: When a tag is assigned by a Tag Association Point, if this point has a tag type
specified, then the service will ensure that the tag has this tag type.

Assertions for Tag Association Points
The operational control of tag association points is performed using assertions. These will
typically be set using some integration code, or via the Business Rules component if it has been
licensed. For testing and development they can be set using TYPES/OBJECTS in SmartSpace
Config.

‘Tag Association Point’ has candidate ‘Object’

This assertion should be made for each candidate object in turn. It is an essential input to the
association point. The association will not happen until there is both a candidate object and a tag
that has satisfied the parameters of the association point. Once a tag has been associated, the
candidate will be cleared, indicating that the association point is ready for the next candidate to
be set.

‘Tag Association Point’ sets tag position ‘String’

This assertion can be used if different objects have tags attached at different positions. Before
setting the candidate object, set the tag position to use for the next association. Unlike the
candidate object, this assertion is not cleared when the association has been made, so it is up to
the integrator to ensure that at most one assertion has been made for each tag association point.

external system message of <Tag Association Point> is <String>

8



Automated tag association

This assertion can be set to deliver a system message to the status web page for a tag association
point. It should be combined with the next assertion.

external system status of <Tag Association Point> is <String>

This assertion can be set to indicate a status of the external system integration on the status web
page for a tag association point. Valid strings are (without the quotes):

String Effect

ok green status

warn yellow status

error red status

status of <Tag Association Point> is <String> for object <String> and tag <String> at <Time>

This is generated as output of the association point, and indicates when a successful association
has been made, or the cause of a failure to associate. It is displayed in the status web page.

current tag id of <Tag Association Point> is <String>

The currently detected tag id is set as output during operation of the association point. This is
cleared once an association succeeds. It is displayed in the status web page.

Web Site Operation
The automatic association web page is reached by clicking on the Association menu item.

It allows the association point to be selected from a dropdown, or by URL anchor. The first
association point will be selected by default.

l The web site shows all the relevant state about the association point:

l the candidate object and the position at which the tag should be attached

l the tag id detected

l the most recent status of association, including reasons for not associating

l any external system message or status

9



Automated tag association

The parts of the association status web page

10



Automated tag association

The association status web site showing a tag detected in the station with the required number
of sightings, but no candidate object or position.

11



Automated tag association

An association point for which the MES integration has set the next candidate, but no tag has
yet been detected in the association point.

12



Automated tag association

The association point now has a detected tag, and when the number of sightings has been
satisfied the tag will be associated.

13



Automated tag association

The association station has successfully associated the tag, and the message is displayed.

Association Status Messages

The following status messages can be displayed:

14



Automated tag association

Association Status Condition

multiple tags in
exclusion zone

other tags have been seen within the exclusion distance and height range
around the association point

tag battery is not ok the battery status of the current tag is not OK

tag has the wrong
type

the tag type of the current tag is not OK

object already
associated

if “accept associated” is not set, the candidate must not be associated already

tag already
associated

if “accept associated” is not set, the tag must not be associated already

no tag position a tag position has not been defined in either the assertion or configuration
parameter for this association point

tag position not
defined

the tag position set for the association point has not been defined for the
candidate object type

waiting for data a tag is ready to be associated, but no candidate has yet been set for the
association point

associated the association was successful

Data Warning Timeout

If “data warning timeout” is not 0, the web page displays the missing fields in red after the tag has
been detected for the given time but no candidate has been set.

If the user logged on to the web site is a member of the role System.Operator, then the page also
shows a form to set and save the “data warning timeout” parameter.

URL to a Specific Association Point

To create a shareable URL for a specific tag association point, append the name of the association
point as the query string at the end of the URL. For example, if the default status page URL is:

http://smartspace.int/SmartSpace/AA/Association/Public

then a URL that goes directly to an association point “AP ITL” will be:

http://smartspace.int/SmartSpace/AA/Association/Public?AP%20ITL

15



Automated tag association

Note that any special characters in the association point must be URL encoded, as has been done
for the space in the name above.

16



17



Robust assertion points

Robust assertion points
Assertion points report when an object is at a given place, using strong evidence, including
distance from the point and the speed at which the object is moving. This evidence allows the
assertion point to be robust to transient errors in production, such as assets moving past a
process step or gate location but not actually stopping there. The output of assertion points is
the assertion that an object is located at the point, which can then be used by integration code, or
the Business rules component if licensed, to trigger other actions or track process.

Robust Assertion Points are closely related to Parking: the difference between them is
that Robust Assertion Points provide the ability to assert an object is located at a
point, whilst Parking provides the additional capability of snapping an object into a
given bay. If you need to snap objects to a location, you must use the Parking Area
and Parking Types object types described in Parking.

There are two object types introduced by Robust Assertion Points: Assertion Area and Assertion
Point. The assertion area has two main functions:

1. It groups together assertion points with the same configuration parameters; and

2. It controls a set of objects, which can be located at one of its assertion points.

In a normal configuration, spatial containment is used to define both the points within each area,
and the objects controlled by the area.

Assertion points only work for objects that have associated tags, because it is the tag
location events that are processed to decide when the object is located at an assertion
point.

Configuring Assertion Points
This section will walk through creating and configuring robust assertion points. This guide
assumes that you have already created a type for the assets to be tracked, and have some
instances associated with tags. See Types and objects and Tag association on the Ubisense
Documentation Portal for how to do this. We assume the asset type is called Product.

1. If you haven’t already done so, set up a representation model for Assertion Point so you
can place them and see where they are placed. See and Adding a representation to a type
on the Ubisense Documentation Portal for how to set a representation on a type in

18

../../../../../../Content/UserResources/BuildandCreate/TypesAndObjects/types-and-objects-configuration.htm
../../../../../../Content/UserResources/BuildandCreate/ManTagAssociation/tag-association-configuration.htm
../../../../../../Content/UserResources/BuildandCreate/SiteVisualization/assignreps/model-assignment.htm#Adding


Robust assertion points

SmartSpace Config. Make sure the representation is scaled to a suitable size, and the
origin set appropriately.

2. Create an object for the assertion area. Using SmartSpace Config, under TYPES/OBJECTS
drag out the Assertion Area type into the object browser. Double-click <Create new
object> from the Assertion Area objects window. Enter the name of the assertion area
into the name field, and click Save.

3. Similarly create an instance of type Assertion Point for each assertion point you want in the
assertion area. In our example, we will create assertion points called “B4 Gate 1” and “B4
Gate 2”. Drag the Assertion Point type into the object browser,double-click
<Create new object> and then enter the two names on separate lines of the name box.
Click Save.

4. Now set up a spatial extent for the assertion area, covering the region containing all the
assertion points that will be in this area. In SPATIAL PROPERTIES select the Assertion Area
type, and then the “extent” spatial property. Under SPECIFIC SPACES double-click <Create
new specific space> and select the area you are creating in Choose an object, then use
Shift + left mouse to place points for the boundary of the extent. Click Save.

19



Robust assertion points

5. Also create a default space for the origin of the assertion point type – in this case a small
space with a limited height, so that it can be contained within the extent of the assertion
area. Select the Assertion Point type, then the “origin” spatial property. Under DEFAULT
SPACES, double-click <Create a new default space>, select Assertion Point type again,
click in the editor and press Space to reset the view. Now create a 1 m diameter cylinder
around the point with vertical extent from top 1.0 m to bottom 0.5 m. Click Save.

6. Place each of the assertion points that were created. In the OBJECT PLACEMENT task,
select the Assertion Point type from the filter dropdown, and then drag each assertion
point instance into the location on the map. If Assertion Point does not appear as a
choice, you have not set a representation model – see step 1.

20



Robust assertion points

7. At this point, the spatial properties you have just set up should automatically populate the
Assertion Area contains Assertion Point property. To check this, go to TYPES / OBJECTS
and in the COMPLEX PROPERTY list find ‘Assertion Area’ contains ‘Assertion Point’. Drag
this into the right hand pane. There should be two rows.

8. Configure the parameters of the assertion area. Go to the SERVICE PARAMETERS task,
choose Parking and tag auto-association, and then drag the Assertion Area type into the
object browser. In the dialog that displays, double-click the area you created. You can now
set up the evidence required for the area. The parameter meanings are described below.
For the moment we will leave them with their default values.

21



Robust assertion points

9. Now we define a spatial property of the Product type to automatically make product
instances controlled by the assertion area when they enter its extent. In TYPES / OBJECTS,
select the Product type, and under PROPERTIES OF PRODUCT, double-click
<Create new property>. Create a property called “origin” whose value has type Space.
Now go to the SPATIAL PROPERTIES task, and follow a similar process to step 5 to create
a default space for this origin property. Then inMONITORED SPATIAL RELATIONS,
double-click <Add new request> and for Container select extent of ‘Assertion Area’ and
for Contained select origin of ‘Product’. Click Save.

10. Now move one of your products so that it is at the location of one of the association
points. The tag should get sightings at the corresponding offset, and once the evidence is
satisfied, the assertion should be made that the assertion point has located the object. In
TYPES / OBJECTS, under the COMPLEX PROPERTY list, drag the property ‘Assertion Point’
has located ‘Object’ into the right hand pane. There should be a row for the detected
object.

22



Robust assertion points

Parameters for Assertion Areas
The following parameters are defined for assertion areas, and apply to the assertion points they
contain.

forwards only

When set to false (the default), the object will be detected whether it is at the assertion point
forwards or backwards. When true, the object must be pointing only in the same direction as the
assertion point. The two cases, forwards and backwards, are illustrated below.

The two possible orientations of the object when located at an assertion point, and their
relationship to the tag position.

readings threshold

The minimum number of tag events required to have been seen for an object that is controlled by
the area, before it is located at an assertion point.

damping factor

The sightings of the tag are passed through a low-pass filter, before computing the distance of
the object from the assertion point, and the speed of the object (see the parameters below). This
filter effectively smooths out the tag position by blending each sighting with the previous
position. The damping factor controls the strength of this smoothing, and should be in the range

23



Robust assertion points

0 <= damping factor < 1. At 0, there is no damping, so the raw tag sightings are used. At 0.5, the
current position of the tag is blended equally with the previous position of the tag. A value of 1
should not be used, as the current position of the tag would be entirely discarded.

If the tag sightings are noisy, such as locations produced by GPS, then a higher damping factor
can be used to smooth the data out before attempting to satisfy the constraints below. The
trade-off will be how many sightings it takes before “located at” is asserted.

maximum distance to enter

The damped position of the tag must be below this distance from where it would be if the object
was located at an assertion point (forwards or backwards) to consider it as “located at” the point.

maximum speed to enter

The damped speed of the tag must be below this threshold to consider the object as “located at”
a point.

minimum distance to leave

The damped position of the tag must be above this distance from where it is would be if the
object was located at an assertion point (forwards or backwards) to consider it as no longer
“located at” the point.

minimum speed to leave

The damped speed of the tag must be above this threshold to consider it as no longer “located
at” a point.

use default containment

If true (the default), then use the default spatial property interactions to populate the ‘Assertion
Area’ contains ‘Assertion Point’ and ‘Assertion Area’ controls ‘Object’ assertions. See the section on
Assertions for Assertion Areas.

allow multiple objects

Whether multiple objects can be asserted as located at a single assertion point at the same time.
If true, then a single assertion point can have multiple rows at one time in the ‘Assertion Point’ has
located ‘Object’ assertion. If false, only a single object can be detected at a time, and a second
detection will be ignored.

use damped locations

24



Robust assertion points

Where location streams are noisy, smoothing locations by using the calculated damped position
for object locations rather than the original tag x,y,z. locations can make dealing with these
streams much easier, and can, for example, reduce the amount of jitter you see on the web map

When used damped locations is set to true, the damped tag position is used for any subsequent
location inference of the associated object while that object is controlled by the association area.
Defaults to "false".

Assertions for Assertion Areas
<Assertion Area> contains <Assertion Point>

An input assertion, which should contain one row for each assertion area that contains a given
assertion point. In most cases this will remain relatively constant in operation, unless the assertion
points themselves are mobile. If “use default containment” is true, the contents of this assertion
will match the spatial relation “Assertion Area extent contains Assertion Point origin”.

<Assertion Area> controls <Object>

An input assertion, which contains the set of objects that can be located at an assertion point
within each assertion area. If “use default containment” is true, then contents of this assertion will
match all spatial relations “Assertion Area extent contains <any other monitored type and role>”.

<Assertion Area> has located <Object>

The output of assertion points, indicating which objects have been located at each point.

Advanced use
While the default behavior when “use default containment” is true covers many useful cases, it is
possible that a process requires more sophisticated logic to decide which assertion point is in a
given assertion area, and which object can be controlled by a given assertion area. For example, it
may be that only objects which a specific other property (such as “ready to ship”) are allowed to
activate a process gate.

If this is the case, set “use default containment” to false, and then implement your own method of
maintaining the two input assertions, for example use a Business Rule that combines spatial
containments with other logical predicates.

Details of Assertion Operation
The technical details of how assertion areas operate are as follows.

25



Robust assertion points

l For each object controlled by an area, the service maintains a damped estimate of the
position and velocity of the object’s associated tag.

l In order to be detected at a point contained in the area,

o has tag must be seen at least readingsthreshold times while controlled by the area;
and

o the tag position estimate must be closer thanmaximum distancetoenter from where
it would be if the object were at the point, and its speed estimate must be less than
maximum speed to enter.

l If the area is forwards only then the object is only considered for detection in the same
direction as the point. Otherwise it is tested for detection in both the direction of the point
and also rotated 180 degrees.

l Once an object is detected at a point, the haslocated assertion is made, and it remains until
either:

o the damped tag position is more thanminimum distance to leave from the position
when located at the point, and moving faster than theminimum speed to leave; or

o the area no longer “controls” the object.

Once conditions are met the assertion is retracted.

26



Parking

Parking
Parking is an extension of robust assertion points, where the object is snapped into the given bay
while it satisfies the strong evidence. Configuring parking is almost exactly the same as for robust
assertion points, so you should first read the section on Robust assertion points.

Whilst the terminology used is parking-based, this functionality can be applied more generally
where the location of objects should be snapped to a set of allowed locations and orientations,
such as presenting a cleaned-up view of noisy location data.

There are four major differences between parking and assertion points.

1. The types used are different:

Assertion Area→ Parking Area

Assertion Point→ Parking Bay

Parking Area is derived from Assertion Area, and Parking Bay is derived from Assertion
Point. This means that they inherit all spatial properties, parameters and assertions, and
these inherited configurations have the same function.

2. There are two additional parameters of Parking Area: “default orientation” and “default
orientation used”. These will be discussed below.

3. The configuration parameter “allow multiple objects” is false for all objects of type Parking
Area. You can change this parameter as required, to allow multiple objects to park at each
bay if this makes sense, but it usually does not.

4. When the assertion “has located” is made for a parking bay and object, the object is also
snapped to the location of the parking bay.

Location Snapping
Parking, as with assertion points, is only applied for objects that have an associated tag, because
the tag location, along with the attachment position on the object, is used to decide whether the
object is at the parking bay.

While an object is parked at a bay (“has located” has been asserted), each time a tag location is
seen for the object, it will be placed in the bay if it is not currently there. The orientation used will
be that of the parking bay, possibly rotated by 180 degrees if “forwards only” is false. The tag
locations will be used to decide whether the object is still in the bay.

27



Parking

As with assertion points, if the tag satisfies the parameters to leave the parking bay, then the “has
located” assertion will be retracted, and the object will move again according to the tag position.
If the default orientation parameters are set, and the object is still “controlled” by the parking
area, then that orientation will be applied as the tag moves.

Also, as with assertion points, if the “controls” assertion is retracted for a parking area and object,
the object will move again according to the tag position.

Parameters for Parking Areas
The parameters of parking areas are the same as assertion areas, but with the following
additional parameters.

default orientation

When “default orientation used” is set to true, and an object is “controlled” by a Parking Area, but
not currently parked at a bay, then the orientation of the object (its “yaw”, or rotation about the
vertical axis) will be snapped to this angle, in degrees. The tag position offset will be applied
assuming that the object orientation is this default orientation.

This is only used if the object is not currently parked in a bay. When parked at a bay, the
orientation of the bay will be used instead, either forwards or backwards if the parking area is
configured to allow this (“forwards only” set to false).

default orientation used

Set to true to enable the default orientation within the area as described above.

Multiple Parking Areas
Only one parking area should control a given object at a time. If multiple areas control an object
at the same time, the resulting parking behavior is undefined. Normally this means that parking
area extents should not overlap.

Technically, the intersection of any two parking area extents should not be able to contain the
origin space of the parked objects – spatial hysteresis within the SmartSpace spatial monitoring
then prevents the object from being controlled by both areas at the same time. See the section
on Spatial monitoring for more details.

28



Parking

Layout of Parking Bays
It is worth noting that the driven objects feature, described in the section on Driven objects can be
used to lay out large numbers of regularly positioned parking bays, which may simplify the
configuration of parking for a large site. Essentially the process is to create a container with the
correct layout parameters, and then add each bay to the container in the correct order so that
they get placed in a grid that matches the real bay layout. This technique only works where the
parking area layout is exactly regular over extended areas of the site.

When dealing with many parking bays it is probably most convenient to prepare a set of
commands for the ubisense_udm_admin command-line tool, rather than manipulating the “is
contained by” relation using SmartSpace Config.

29



Driven objects

Driven objects
The Driven objects feature supports locating an object based on the location of another container
object. When the container moves, the contained objects are positioned relative to the container.
Various layout options can be configured using the parameters of the driven object.

Configuring Driven Objects
We will work through a container configuration, suitable for tracking crates holding work orders.

1. Create the types we will use to represent crates and work orders. In SmartSpace Config,
select the TYPES / OBJECTS task, and double-click <Create new type>. In the dialog enter
the type name “Crate” and tick “Object” from the list of parents. Enter “crate number” as
the unique identification property. Click Save.

2. Repeat to create type “Work Order”, named with the property “id”.

3. Import and assign representation models for these two types. SeeModel import andModel
assignment for how to set a representation on a type in SmartSpace Config.

30

../../../../../../Content/UserResources/BuildandCreate/SiteVisualization/model-import.htm
../../../../../../Content/UserResources/BuildandCreate/SiteVisualization/assignreps/model-assignment.htm
../../../../../../Content/UserResources/BuildandCreate/SiteVisualization/assignreps/model-assignment.htm


Driven objects

4. Now we will set up the default layout parameters for crates. In the SERVICE PARAMETERS
task, select the Co-located objects configuration, and then the Crate type. (Use the
Expand All button to display the object hierarchy, if necessary.) Drag the Crate object into
the object browser and double click 'Crate' objects to set the parameters for all crates.
Click Edit in the parameters window. We will set up the crate to hold four objects in a 2x2
array. Enter the parameters as shown below, then click Save.

5. Create an instance of crate and four instances of work order. In the TYPES/OBJECTS task,
drag type Crate into the right-hand pane, then double-click <Create new object> and
enter CR1 as the crate number. Click Save.

6. Repeat using the Work Order type to create four work orders, with IDs “A0001”, “A0002”,
“A0003” and “A0004”.

31



Driven objects

7. Set the work orders to be contained by the crate. In TYPES/OBJECTS, under the COMPLEX
PROPERTY list drag the ‘Object’ is contained by ‘Object’ property into the right-hand pane.
In the window created, double-click <Create new property row> and pick “A0001” as the
first object, and “CR1” as the second. Click Save. Repeat for the other work orders.

8. Now place the crate on the map. Use the OBJECT PLACEMENT task, select Crate in the type
filter dropdown. Drag the CR1 crate onto the map. The crate and all the work orders will be
located. Now use Shift+left mouse to drag the crate. The work orders will be placed
relative to the crate as soon as it is dropped.

Parameters for Driven Objects
The following parameters control the layout behavior of driven objects. In the descriptions below,
the x, y and z directions are all relative to the orientation of the container.

X direction capacity

How many slots along the x direction of the container

Y direction capacity

How many slots along the y direction of the container

X direction spacing

The distance between slots along x direction

Y direction spacing

The distance between slots along y direction

Z direction spacing

The distance between slots along z direction (filled after x and y)

32



Driven objects

unset locations on leaving

When an object is removed from a container, unset its location. Defaults to false, so the object
will be left at its last location until it is located by some other means.

default orientation

The orientation in degrees of each slot. Contained object yaw (rotation around z axis) is set to this
orientation.

origin X

The horizontal position of the origin relative to the contained slots: “left”, “middle” or “right”

origin Y

The vertical position of the origin relative to first slot: “top”, “middle” or “bottom”

starting corner X

The horizontal position of the first slot to fill: “left” or “right”

starting corner Y

The vertical position of first slot to fill: “top” or “bottom”

fill X first

If true, fill across then down. If false, fill down then across.

fill method

This determines what happens when containments are added and removed. It is set to one of:

l “insert at start”: New containment goes into the first slot, all other slots are shifted to make
way. On removal, all slots are shifted to close the gap.

l “insert at end”: New containment goes into the last slot. On removal, all slots are shifted to
close the gap.

l “insert into first gap”: New containment goes into the first unoccupied slot. On removal no
other contained objects are moved.

alternate orientation

If “direction to use alternatives” is set, this is the orientation in degrees of alternate rows or
columns.

alternate spacing

If “direction to use alternatives” is set, this is the spacing of alternate rows or columns

direction to use alternates

33



Driven objects

In which direction the alternate spacing and orientation are used, one of “x direction” or “y
direction” or “not used"

minimum distance to leave

If a contained object has a tag, and that tag is seen more than this distance away from where it
would be if the contained position is correct, then the object will leave the container. Set to zero
to prevent leaving based on tag locations.

Assertions for Driven Objects
The following assertions are used by the driven objects feature.

<Object> is contained by <Object>

This input assertion indicates that a contained object is driven by a container.

<Object> has <Object> at slot <int>

An output assertion (not visible in TYPES/OBJECTS) this is derived from the changes to “is
contained by” and the “fill method” parameter of the container. The assertion indicates that a
container object has a given contained object at its nth slot.

Details of Driven Objects Operation
If an object with an associated tag is asserted as contained in a container, its location is set based
on the container position, and tag locations are ignored unless they are more than a configured
distance from the current position generated by the container.

Note that driven object locations are only updated when some location event is received for the
location cell.

For example, if no tags are sending sightings to the location cell, no update of driven objects will
occur. This means that if you add a row to ‘Object’ is contained by ‘Object’ you may not see the
contained object get located until another location event occurs. In operational use, with tag
events arriving regularly at each location cell, this is not usually an issue. During demonstrations
and development work, this can be confusing behavior until it is understood. In this case, you can
simply place the container again to generate all contained locations.

Example Layout Using “Alternates”
The use of the “alternate” parameters can be confusing, so here is an example to illustrating their
effects on layout. The parameters used are:

34



Driven objects

Parameter Value

X direction capacity 4

X direction spacing 4

Y direction capacity 5

Y direction spacing 2.5

alternate orientation 135

alternate spacing 6

default orientation 45

direction to use alternates X direction

origin X left

origin Y top

starting corner X left

starting corner Y top

The resulting layout is shown below, where the black square is the container (with origin in its
center), and the black cars are the contained objects (with origin at their rear-view mirror).

35



Driven objects

The offset of the contained objects from the origin of the container requires some careful
consideration. Conceptually the layout generates a set of slot locations which are contained by
the box shown as red dotted line. This is the box that is aligned, as configured by the origin
parameters, with the origin of the container.

So in this case, because we have specified “left” and “top” for the origin, the top left slot location is
aligned with the origin of the container. If we had specified “right” and “bottom” then the bottom
right slot location would be aligned with the container origin. If we specified “middle” and
“middle”, then the center of that red box would be on top of the container origin.

36



Stale Location Detection

Stale Location Detection
The stale location detection feature is used to report objects for which the associated tag is no
longer getting locations. For example, if a tag is taken out of the coverage of the location system,
the object will be left at the seen last location. The system allows a maximum time interval to be
configured for object types, or for individual objects. These timeouts can also be dynamically
overridden. If an object has been located using an associated tag, and then the tag stops
generating sightings for the time interval configured, an assertion is generated that the object
location is “stale”. As soon as a new sighting is made of the tag, the stale assertion is retracted.

It is up to external integration code, or to business rules (if the Business rules component has been
licensed) to decide what to do when a stale assertion has been made for an object. For example,
the object might be assigned a new representation indicating that its location is stale. In some
cases, it may be appropriate to remove the object location when it becomes stale. The appropriate
choice of action depends on the application. A simple method for cleaning up stale locations can
be configured without the need for business rules or external integration.

Setting a Stale Timeout
Using SmartSpace Config, in the SERVICE PARAMETERS task, select Stale location timeouts, and
then locate the type of object for which stale location detection is required from the list of objects.
(Use the Expand All button to display the object hierarchy, if necessary.) Drag the object type into
the object browser to open a window listing all instances of this type.

In order to configure stale detection for all objects of a given type, double-click the row 'object
name' objects. To configure a single object, double-click the particular instance you require.

37



Stale Location Detection

Now click Edit and enter the timeout to use in seconds. Normally the timeout to use will be a
function of the business process, or will be related to the expected location rate of the tag
attached to the object. For example, if the tag is expected to generate a sighting every three
seconds, and you wish to detect when the tag has not been seen for three sightings, a timeout of
10 seconds would be appropriate. Alternatively, if the business use case requires the object
representation to change if the location is more than five minutes old, set a timeout of 5*60 =
300 seconds.

The output of stale location detection uses an assertion stale flag <Object>. This will typically be
examined and acted upon using some integration code, or via the Business rules component if it
has been licensed. For testing and development it can be viewed using TYPES/OBJECTS in
SmartSpace Config.

38



Stale Location Detection

Dynamically Setting Stale Timeouts
In addition to the method described in Setting a Stale Timeout, there is an assertion, which
appears in the TYPES / OBJECTS task as ‘Object’ stale timeout is ‘Double’ seconds: Bool, that
allows a timeout specified in the service parameters to be overridden dynamically.

If an object has a timeout specified in this assertion, it will override the timeout specified in the
service parameters. This allows the stale timeout for an object to be modified using Business rules,
or via one of the integration methods for business properties. For example, if an object’s tag is
expected to be seen less frequently when it is in a particular part of a process, the assertion can be
used to increase the stale timeout while the object is in that part of the process.

Removing Stale Object Locations
A simple method for cleaning up stale objects from the map without the use of a business rule or
external integration can be configured by using the remove when stale service parameter which
appears under Stale location timeouts in the SERVICE PARAMETERS task.

This parameter is a Boolean and defaults to false. If it is configured to be true for an object, then
when that object’s stale flag becomes set, the object’s location will also be removed (via the
remove location pending flag).

This provides a simple configuration to remove stale objects from the map. Business rules would
still be needed to support more complex rules for removing objects based on combinations of the
stale flag and other process state.

Parameters for Stale Location Detection
The following parameters are used to control stale location detection.

stale timeout

How long to wait for a sighting before asserting that an object is stale. Set to zero (the default) to
disable stale location detection.

remove when stale

If this is configured to be true for an object, then when that object’s stale flag becomes set, the
object’s location will also be removed (via the remove location pending flag). Defaults to false.

39



Stale Location Detection

Assertions for Stale Location Detection
The following assertions are used by the Stale location detection feature. They will typically be
examined and acted upon using some integration code, or via the Business rules component if it
has been licensed. For testing and development they can be viewed using TYPES/OBJECTS in
SmartSpace Config.

stale flag <Object>

The stale flag will be set to true for any object currently detected as stale, and will be removed
when the object tag is sighted again.

‘Object’ stale timeout is ‘Double’ seconds: Bool

If an object has a timeout specified in this assertion, it will override (dynamically) the timeout
specified in the service parameters.

40



Location Removal Mechanism

Location Removal Mechanism
The location removal feature is similar to tag removal and object deletion supported via assertions
in SmartSpace core. Location removal allows an assertion to be made that causes the current
location of the object to be removed, and the assertion will be retracted once this has been done.
Location removal doesn’t require any configuration parameters – it is purely implemented using a
single assertion.

Assertions for Location Removal
remove location pending flag <Object>

When this flag is asserted for an object, the object’s location will be removed, and then assertion
will be retracted. Any process action that must be executed after the object has been removed can
be safely executed when the assertion has been retracted. If the object is still getting located by
some other means, such as via driven objects, or an associated tag, then the object might be
located again (possibly immediately).

Example of Location Removal Use
One example of the use of the location removal mechanism is to clean up objects that have not
been located by their tag for some process-related time interval. To implement this, specify a stale
timeout for the object type, and then when the stale flag is set for an object, set the location
removal pending flag. This can be can be done using external integration code, or trivially with
Business Rules if they have been licensed.

41


	Location rules
	Overview
	Audience
	Prerequisites
	Installation
	SmartSpace Config


	Automated tag association
	Creating a Tag Association Point
	Parameters for Tag Association Points
	Support for Multiple Tag Positions
	Support for Tag Types

	Assertions for Tag Association Points
	Web Site Operation
	Association Status Messages
	Data Warning Timeout
	URL to a Specific Association Point


	Robust assertion points
	Configuring Assertion Points
	Parameters for Assertion Areas
	Assertions for Assertion Areas
	Advanced use
	Details of Assertion Operation

	Parking
	Location Snapping
	Parameters for Parking Areas
	Multiple Parking Areas
	Layout of Parking Bays

	Driven objects
	Configuring Driven Objects
	Parameters for Driven Objects
	Assertions for Driven Objects
	Details of Driven Objects Operation
	Example Layout Using “Alternates”

	Stale Location Detection
	Setting a Stale Timeout
	Dynamically Setting Stale Timeouts
	Removing Stale Object Locations
	Parameters for Stale Location Detection
	Assertions for Stale Location Detection

	Location Removal Mechanism
	Assertions for Location Removal
	Example of Location Removal Use


