
SmartSpace®
Support for managing errors in
SmartSpace applications
From version 3.6

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: https://www.ubisense.com

https://www.ubisense.com/

Copyright © 2023, Ubisense Limited 2014 - 2023. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from Ubisense
at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.com

All contents of this document are subject to change without notice and do not represent
a commitment on the part of Ubisense. Reasonable effort is made to ensure the accuracy
of the information contained in the document. However, due to on-going product
improvements and revisions, Ubisense and its subsidiaries do not warrant the accuracy of
this information and cannot accept responsibility for errors or omissions that may be
contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AngleID® are registered trademarks
of Ubisense Ltd. DIMENSION4™ and UB-Tag™ are trademarks of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/

Page i

Contents

Introduction and motivation 1

Some specific error use cases 2

Examples of actual errors that might be raised 2

Examples of activities enabled by error reports 3

A summary classification of error types in SmartSpace Applications 4

Summary of intended error handling data flow 5

Overview of error handling features 6

Error handling data model and usage examples 6

A standard set of user-populated error enumeration types 6

Properties for recording error events and counts 6

No ‘error event object instance’ by default 7

Detail of the most general method for asserting error events 7

Automated clean-up for error events 8

Process-based clean-up for error events 8

Logic errors detected in use of the error events module 9

Simplified interface to error reporting and retracting 9

Searches dealing with errors 10

Reports dealing with errors 11

Visibility of error counts and events in health monitoring 12

Error counts sent by the rules engine 12

Error events sent by the rules engine 13

Metrics sent by other software 13

Example dashboard 13

Installation and trivial usage example 15

Prerequisites 15

Installing Error reporting 15

Configuring a simple example 16

Introduction and motivation

Introduction and motivation
This document describes a set of generic definitions and best practice recommendations for
SmartSpace error detection, handling, reporting, tracking and optimization.

In general, SmartSpace applications link together four different kinds of data:

1. Data managed by external systems, accessed by SmartSpace integration services

2. A logical model of the customer’s business process, encoded by SmartSpace rules

3. Location data about the physical positions of objects in the world, derived from sensor
systems

4. Process data generated by end user behavior, as they perform various actions in the world

Because SmartSpace applications link together four different categories of information they can
have four different kinds of error:

1. Integration Error. Integration services suffer from software, hardware or network failure

2. Logic Error. The model may be coded incorrectly, so application logic hits unexpected
scenarios

3. Sensing Error. Data from sensor systems will be subject to errors that exceed expected
levels

4. Process Error. End users may make mistakes that must be detected and communicated
back

These different kinds of error are dealt with by different people in different places:

1. Integration errors are dealt with by IT support people (generally off-site, non-customer
staff)

2. Logic errors are dealt with by product support people (always off-site, non-customer staff)

3. Sensing errors are mostly dealt with by on-site maintenance people

4. Process errors are mostly dealt with by on-site end users, depending on the process

The different job functions each have subtly different requirements for tool support:

l The standardized, site-and-application-independent, back end job functions in (1) and (2)
can be supported very well using industry-standard health monitoring support

1

Introduction and motivation

l The customer-targeted, application-and-location-dependent job functions in (4) are best
supported by the SmartSpace application itself, possibly with very occasional use of health
monitoring as a way of helping to optimize over time and to help to debug complex issues
(e.g. sometimes a logic error may be falsely viewed as a process error and vice versa, so
combining the data at the back end and in application test may be valuable)

l The job function in (3) lies somewhere in between these two extremes, in that general
sensor system performance metrics are independent of the site and may be dealt with well
by health monitoring, but individual errors are site-and-location-specific and are best dealt
with using the kind of mechanisms found in SmartSpaceVisibility and Reporting

In SmartSpace we provide a single generic error model that supports all these kinds of error, can
be extended and configured using the Rules engine developer tools, and supports the different
job functions associated with them by integrating with the Health monitoring feature from
Advanced IT support, as well as the Reporting and Visibility features.

Some specific error use cases

Examples of actual errors that might be raised

Here is a list of possible scenarios which might lead to assertion of an error condition:

1. In a system using external devices, the device loses connection to SmartSpace. This would
be an Integration Error associated with the individual device that had lost connection.

2. In any RTLS system, an object has a tag with Warning or Error state. This is an instance of a
Sensing Error associated with the object. It would not normally be communicated
individually to an end user as an alert, but it would be useful to be able to view objects with
the given error.

3. In an asset tracking application, assets can be flagged as being an ‘illegal asset in zone’ for
a given zone. This is a Process Error associated with the asset and the zone. It would likely
be communicated to an end user in an alert, and it also has a location, which is the same as
the location of the zone.

4. In a ‘contact tracing’ application, we might want to log each encounter between users as a
Process Error. This error would be associated with each person involved and would have a
location, which would be the same as the location of one of the people but only for the
time in which the error was actually occurring. The location of the error, and related

2

Introduction and motivation

information, would not normally be communicated to an end user but would be used in
searches and reports.

5. In some application, the error reporting model might itself be used in a way that violated
some invariant. This would be a Logic Error associated with the actual error being raised at
the time.

Examples of activities enabled by error reports

Here is a list of possible activities that we want to be able to support when errors occur and an
outline of how we do this:

l Present individual error occurrences in an application-specific way to end users. We do
this by using the existing alerting mechanisms (notify <Role>, notify <role> near
<Object>, and notify <Role> near <Object> using <Search>)

l Drill down into application-specific details of individual error occurrences. To do this we
need to have a way of associating extra user data with error occurrences

l Present a collated view showing all objects of a certain type that have any errors
associated with them, probably also filtering by some set of errors. We would most likely
want to do this by searching over some property that mentioned all the errors and objects
concerned

l Report on the quantity and frequency of errors of various types over some period and
detect trends and monitor performance against KPIs. This is most naturally done using the
reports engine, and so requires integration of error support with reporting

l Drill down into underlying causes of errors, especially non-Process errors or Process
errors that may have been incorrectly raised. This is most naturally done using the web-
based dashboards available in health monitoring, and so requires integration of error
support with the Health monitoring feature

l Support application development, deployment, upgrade and test, with all levels of
errors, using the error framework to support standardized and controllable application test
criteria

3

Introduction and motivation

A summary classification of error types in SmartSpace Applications
This table summarizes our view of the various kinds of error that can occur in a SmartSpace application, and the appropriate processing for each
of these kinds of error.

Kind of
error Example error scenarios Where they occur What causes them How they are

detected

The users who
should be
told

How to tell
them

Optimization
mechanisms

Integration
Error

Losing contact with
remote devices or software
systems

External systems Network, hardware
or coding errors

Integration
components or
application
logic

IT support Health
dashboard
with alerts

Historic health
dashboards

Logic Error Discovering logical objects
to be in some unexpected
state; preconditions or
invariants violated

The application
itself

Coding errors Application
logic

IT support Health
dashboard
with alerts

Historic health
dashboards

Sensing
Error

Losing location events
from tagged assets; RTLS
errors leading to objects
bouncing between zones

The sensing
infrastructure

Sensor noise,
environment
problems

Location rules,
or application
logic

Physical
maintenance
staff (on site)

Health
dashboard
with alerts +
map alerts

Historic health
dashboards +
map-based
reporting

Process Error End users violating process
in ways that are expected
and handled by the
application

The end user
execution of the
business process

User errors Application
logic

End users,
according to
their role (on
site)

Application-
specific: map
alert, search,
email, HMI, …

SmartSpace
Reporting +
some historic
dashboards

4

Introduction and motivation

Summary of intended error handling data flow

5

Overview of error handling features

Overview of error handling features

Error handling data model and usage examples

A standard set of user-populated error enumeration types

There is an Error type, with four descendant types: Integration Error; Logic Error; Sensing Error
and Process Error. The Error type itself descends from Enumeration, reflecting the intended use.
New instances of Error represent different kinds of individual error, and not different error events.

A new kind of individual error is created by creating an instance of the appropriate Error type, so
that each of the four error types lists out the possible errors that can occur, for example:

When creating a product module, it makes sense to use the TRANSLATE() feature so that the
error descriptions can be localized.

Properties for recording error events and counts

All error events are recorded by asserting a single property:

<Error> event <Int> applies to <Object> : Bool

Identical events are grouped by using the same sequence number, which is taken from the
sequence number of the given individual error:

sequence number<Error> : Int

6

Overview of error handling features

No ‘error event object instance’ by default

The error handling data model does not an object instance to denote an instance of an error
event. This is because such an object instance is commonly not required for many of the use cases
(e.g. arguably all use cases apart from the contact tracing case #4) and where some object
instance is required it is for very application-specific reasons and has its own associated
functionality (e.g. in case #4, some integration with driven objects, some timing information,
…). Furthermore, creating an object generally requires creating a name to use the object
effectively in searches, reports etc., and names must be unique so this is another thing that the
user has to work to ensure; this using a new instance of an object means more work in business
rules, often for no actual benefit.

If in some case it makes sense to create an instance of an object associated with the particular
error then this can easily be achieved by creating a new object at the time the error is raised and
associating it with the error event using the existing error event property as described above. The
row in the error event property can then also potentially be used to control the object lifecycle.

Detail of the most general method for asserting error events

Some convenience methods are also provided to support error assertion, but it is permitted, if a
bit verbose, to work directly with these properties to assert that an error event has occurred. And
it helps to understand exactly what gets asserted when an error event is asserted, so we first deal
with the complex and verbose way of asserting error events before looking later at the simple way.

For example, in an asset tracking application, when an asset is detected to be illegally placed in a
zone, we could log an error event involving both the asset and the zone as follows; this creates
two rows in the error reporting property:

7

Overview of error handling features

The value of ‘the sequence number of error’ also works as a true count of the number of events
that have occurred for this error. The value of the sequence number in the assertion should
always be the current value of the sequence number.

This method can be used to assert error events of arbitrary arity; that is, any number of objects
may be associated with the (error, seqno) pair.

Automated clean-up for error events

It is important to ensure that the data model does not fill up with old error events, so two clean-
up features are provided.

l If a single row of the error event is deleted (for example, if the asset in the use case above is
WIP which gets deleted after being shipped) then all the other rows are deleted as well.

l If none of them is deleted by any other means, error event rows will persist until they are
cleaned up according to an aging specification configured by the property:

the lifetime in hours of <Error> : Double

The lifetime is set to 24.0 hours when a new error instance is created, and it can be changed
after that. If the lifetime is deleted, then that event of that error will persist forever, and a
logic error will be raised. The error lifecycle is managed internally using a property:

the timestamp of <Error> event <Int> : Time

which is set when the error event is asserted. Note that it is not appropriate to make this
property into a parameter because Error is a user-defined type loaded in a module, and
there is no easy support for parameters of user-defined types.

Errors are cleaned up automatically by the rules engine itself according to the policy “if the
timestamp of error event id + the lifetime in hours of error < now then set the timestamp
of error event id = null” (the two properties above are understood by the rules engine and this
code is executed periodically inside the rules engine).

If a user has created properties whose row lifetime is determined by entries in the error event
properties, then those user-created properties need to be cleaned up by adding extra event
handlers to the error event properties.

Process-based clean-up for error events

The error events module is primarily concerned with recording that an error occurred, what it
involved, and when it occurred, rather than with keeping track of the current error state. That is,

8

Overview of error handling features

there is no general support (and nor could there be) for canceling errors based on state.

Having said that, it is perfectly OK to cancel errors using event handlers. This is supported by
some convenience properties, but as with error event assertion, it can be done directly. In any case
it would generally be done using a ‘for each’ statement, of this general form, which cancels all
instances of the error events that would be raised by the error state:

Note that only a single row needs to be deleted, as the automated deletion support will ensure
that all the other error-related state is cleaned up.

Logic errors detected in use of the error events module

When an error object is created, its sequence number and lifetime values are initialized, and
subsequent changes are restricted. The error reporting module itself detects and reports two
different logic errors:

l Any change to the sequence number, which is not just an increment by one (reported as an
‘illegal change to sequence number’ logic error),

l Any deletion of the lifetime or setting the lifetime to a value less than zero (reported as an
‘illegal change to error lifetime’ logic error).

The event handlers ensure that the existence of an error event row implies the existence of a
timestamp for that error event (and hence the eventual clean-up of the event row). There are no
checks on the value of the sequence number used in an error event (but non-standard use will not
lead to problems).

Simplified interface to error reporting and retracting

The general methods for asserting and retracting shown above will work for error events that
involve an arbitrary number of errors, and will ensure that error assertion occurs within the same
transaction as the event’s occurrence. But they have two limitations:

9

Overview of error handling features

1. They are a bit verbose, and

2. They don’t work for cellular rules and event handlers (because the properties are at site
level)

So, four convenience assertions are provided:

<Error> detected for <Object> : Bool

<Error> detected for <Object> and <Object> : Bool

<Error> retracted for <Object> : Bool

<Error> retracted for <Object> and <Object> : Bool

These properties are hosted by the assertion store, so they can be set directly from the cellular
rules engine as well as the site-level rules engine. Event handlers for each of these assertions
ensure that the error event is recorded in the same way as the earlier code snippets, and then
they retract the relevant assertion.

These assertions only work for error events involving one or two objects, and they take the
recording of the error event out of the transaction in which it occurred (because they use the
asynchronous updating of the site-level rules engine from the assertion store), but they reduce
the amount of code required to assert or retract an error event to the bare minimum. Using these
techniques our earlier example can be rewritten as:

and the retraction of the same error event can be rewritten as:

Searches dealing with errors
The error reporting features described here are not intended to directly support searching in a
convenient way. Typically, the errors that you want to be subject to search are process errors
which are by their nature part of the application. If you want to create application features that

10

Overview of error handling features

communicate process error reports in a user-accessible way then you should normally use the
existing features of Visibility (for example, in the use case above you should directly use the
‘<Asset> is illegal in <Zone> because it has attribute <Attribute>’ property).

It is also important to note that search-related functionality for process errors is generally
concerned with error state, not error events. That is, in the world of search and visibility, we are
primarily interested in fixing an existing error so that it goes away, and doing it in an application-
specific way, whereas this module is mainly concerned with recording that an error occurred, what
it involved, and when it occurred, although (as the section on process-based clean-up describes)
we can easily incorporate error state into the model as well.

To provide tailored searches that deliver a generic view of error events to the user one useful
technique is to maintain a derived view of the _ event _ applies to _ property, that is suitable for
searching in the way that you would prefer. For example, if you want to search for all WIP with
Process errors, then use business rules to update a specific view of the error events that deals with
WIP process errors. However, remember that it is not normally advisable to create new unique
error or exception objects in order to get round the fact that web searches are designed to return
objects – a far better approach is to create an HMI-based UI that uses the queries available in
Reporting which provide the extra flexibility required, as we can see below.

Reports dealing with errors
Generic error reporting also becomes valuable when considering the reports module, where it
makes sense to consider all errors together as part of a general regime of process
optimization. For example, if all process violations result in some process error, then standardized
error reporting allows us to create a standard framework for reporting different kinds of error, and
their changes in frequency over time.

It is easy to log multi-object errors by joining on the event sequence numbers. This example table
shows all the zone/asset error events over a short period in an asset tracking application. This is
generated by joining the _ event _ applies to _ relation (twice) with the zone, asset and error
name properties:

11

Overview of error handling features

and this kind of data can be further used to support charts, like this chart showing a breakdown
of different asset/zone errors for a given day.

Visibility of error counts and events in health monitoring
One of the important benefits of a universal error reporting mechanism is that it makes it easier
to do root cause analysis. For example, if a logic error is generated or a process error is found to
have been raised incorrectly, this can be cross-referenced against other error streams (e.g. an
object bouncing between spaces) and health data (e.g. sensor timing errors) to help identify the
cause.

To support this kind of analysis, the error count and event data in the user data model are pushed
to the health module as counts and event reports.

Error counts sent by the rules engine

Because the error reporting mechanism in the rules engine uses a sequence number which is
constrained to monotonically increase, errors generated within SmartSpace user data all have a
counter associated with them. This value is pushed periodically as a health report by the rules
engine runtime using the metric:

smart_space_application_errors (counter)

with labels:

type = (process | sensing | logic | integration)

name = <the untranslated name of the error>

12

Overview of error handling features

This supports graphing of event rates, deltas, and so on for all errors, with drill down through the
four error types and their individual errors.

Error events sent by the rules engine

Every error event generated is also pushed to the health module, so that the event data can be
searched and tabulated in the health tools. This is done using a gauge:

smart_space_application_error_event (gauge, value always = 1)

with labels:

type = (process | sensing | logic | integration)

name = <the untranslated name of the error>

object_id = <the id of the object>

object_type = <the type of the object>

object_name = <the name of the object>

event_index = <the sequence number of the event>

Metrics sent by other software

Some kinds of error, especially integration and sensing errors, might be detected by other
software outside the rules engine (e.g. integration errors might be flagged in the RDBMS or EDC
services, or sensing errors might be flagged in location rules). In these cases, the implementer
should either:

1. Create a new error name and log error counts and events of the appropriate type directly to
the health module, or

2. Put an error event assertion into the appropriate user data store, to cause an error event to
be asserted, and then subsequently logged.

In general, if there is a good reason for getting the data into the user data store (e.g. if it would be
valuable for user-visible reports or has some impact on business logic) then (2) would be used,
otherwise (1) would be a better approach.

Example dashboard

This example shows a simple dashboard with two panels:

13

Overview of error handling features

l The bottom panel is counting process errors over time for an asset tracking application

l The top panel is showing the individual process error events laid out on the timeline. The
hover help shows the event occurring at a given time, with objects (in this case tool1 and
Station 4) tied together by the event ID.

Note that, because Health monitoring / Prometheus is not really designed to be a reliable event
recording mechanism, you will get a short sequence of event reports representing the error
events, with the first event appearing quite soon after the error occurred (typically delayed by a
time less than the period between scrapes used by Prometheus). The error counts are normally
reported to the Ubisense health server every 5 minutes and are scraped by the Prometheus server
shortly after that, so there may be a delay of up to a few minutes in the timeline between an error
event report and the subsequent increase in the error count.

14

Installation and trivial usage example

Installation and trivial usage example

Prerequisites
The installation instructions assume you have a dataset that includes working support for Business
rules. The simple example also assumes that you have Visibility, Reporting, and Health monitoring,
and that Prometheus and Grafana are running on your system.

Installing Error reporting
In BUSINESS RULES / Load, load the module file ubisense_error_reporting.ssc. You can download
a copy of this file from the Ubisense Downloads Portal.

You should see these event handler definitions:

Publish the loaded rules so that they are now active in your dataset.

15

https://download.ubisense.net/

Installation and trivial usage example

In the PROPERTY HISTORY screen set up the properties ‘the sequence number of <Error>’ and
‘<Error> event <Int> applies to <Object>’, ‘the name of <Enumeration>’ for temporal logging.
You will of course need to ensure that your connection to a suitable database is working.

Configuring a simple example
Create an example error object using translations. For example, the logic error “TRANSLATE(test
error handling)”:

If you have created a translatable name then you may wish to register translations using
ubisense_udm_admin (type register translations ; at the prompt).

Create some objects to be able to demonstrate error reporting. For example, two room objects:

16

Installation and trivial usage example

Log an error using ‘<Error> detected for <Object>’ or ‘<Error> detected for <Object> and
<Object>’:

You will be able to see the resulting error event in the object browser (in this example we had
already asserted two other errors previously):

17

Installation and trivial usage example

In Reporting you should be able to create a query like this join to show the event(s) raised:

And finally, it is possible to create a Health monitoring dashboard that will show the error raised,
with details of the two objects in the event, and shortly after show the error count increasing for
the relevant error:

18

Installation and trivial usage example

19

	Introduction and motivation
	Some specific error use cases
	Examples of actual errors that might be raised
	Examples of activities enabled by error reports

	A summary classification of error types in SmartSpace Applications
	Summary of intended error handling data flow

	Overview of error handling features
	Error handling data model and usage examples
	A standard set of user-populated error enumeration types
	Properties for recording error events and counts
	No ‘error event object instance’ by default
	Detail of the most general method for asserting error events
	Automated clean-up for error events
	Process-based clean-up for error events
	Logic errors detected in use of the error events module
	Simplified interface to error reporting and retracting

	Searches dealing with errors
	Reports dealing with errors
	Visibility of error counts and events in health monitoring
	Error counts sent by the rules engine
	Error events sent by the rules engine
	Metrics sent by other software
	Example dashboard

	Installation and trivial usage example
	Prerequisites
	Installing Error reporting
	Configuring a simple example

