
Ubisense DIMENSION4™
DIMENSION4 trace messages
Wednesday, May 10, 2023

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: https://www.ubisense.com

https://www.ubisense.com/

Copyright © 2023, Ubisense Limited 2014 - 2023. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from Ubisense
at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.com

All contents of this document are subject to change without notice and do not represent
a commitment on the part of Ubisense. Reasonable effort is made to ensure the accuracy
of the information contained in the document. However, due to on-going product
improvements and revisions, Ubisense and its subsidiaries do not warrant the accuracy of
this information and cannot accept responsibility for errors or omissions that may be
contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AngleID® are registered trademarks
of Ubisense Ltd. DIMENSION4™ and UB-Tag™ are trademarks of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/

Page i

Contents

DIMENSION4 trace messages 2

The ‘sensor_health’ trace message 3

ARM section 3

DSP section 6

Additional Periodic DSP health information 8

Location system information messages enabled by default 9

Trace option ‘boot’ 9

Trace option ‘ls_sink_info’ 10

Trace option ‘ls_sink_stats’ 10

Trace option ‘ls_sink_time’ 10

Trace option ‘logging_server_stats’ 10

Trace option ‘tftp_report’ 11

Location system information messages disabled by default 11

Trace option ‘ls_upstream_info’ 11

Trace option ‘ls_sink_tag_data’ 12

Trace option ‘tftp_info’ 12

Sensor information messages enabled by default 13

Trace option ‘sensor_init’ 13

Trace option ‘sensor_info’ 15

Trace option ‘sensor_warning’ 16

Sensor fatal error messages 16

Location system low-level debugging messages 28

Trace option ‘boot_d’ 28

Trace option ‘ls_sink_liveness_d’ 29

Trace option ‘ls_timing_graph_d’ 30

Trace option ‘ls_timing_delay_checker’ 30

Trace option ‘ls_referential_integrity’ 32

Trace option ‘ls_child_has_timing_issue_checker 33

Page ii

Trace option ‘tftp_report_d’ 34

Configuration distribution 34

Sensor low-level debugging messages 40

Trace option ‘sensor_cnc’ 40

Trace option ‘sensor_config’ 40

Trace option ‘sensor_sw’ 41

Trace option ‘tftp_sender’ 42

Location platform warning messages 42

Thread scheduling delays 42

Disk write latency 43

1

DIMENSION4 trace messages

DIMENSION4 trace messages
This section lists the trace messages that might be logged by a DIMENSION4 system, organized
as follows:

l The ‘sensor_health’ trace message. An explanation of the health data periodically sent by
sensors.

l Location system information messages enabled by default. Details of the ‘boot’, ‘ls_sink_
stats’, ‘ls_sink_info’, ‘ls_sink_time’, ‘logging_server_stats’ and ‘tftp_report’ messages which
are enabled by default in this version of DIMENSION4.

l Location system information messages disabled by default. Details of message streams that
might be useful on occasion but are disabled by default.

l Sensor information messages enabled by default. Details of the ‘sensor_init’, ‘sensor_info’,
and ‘sensor_warning’ messages which are enabled by default in this version of
DIMENSION4.

l Sensor fatal error messages. A list of all fatal errors that might be sent by sensors.

l Location system low-level debugging messages. A list of low-level debugging messages
sent by the location system, but disabled by default.

l Sensor low-level debugging messages. A list of low-level debugging messages sent by
sensors, but disabled by default.

l Location platform warning messages. A list of some of the important warning messages
that are logged by the underlying location platform support.

Message format

The format of every message is shown, using the following conventions:

l Constant strings printed in the message are shown as fixed font

l Variables, filled in with some value, are shown as italic (in the health section, they are
also underlined).

For example, the format of one of the sensor_init messages is shown as:

sensor_init: Components OK, will request config from address (our
protocol address is address)

2

DIMENSION4 trace messages

And in the log itself this might correspond to a displayed message like this:

sensor_init: Components OK, will request config from 10.1.2.4 (our
protocol address is 10.1.2.26)

Traces enabled by default

From DIMENSION4 version 1.0.2 commonly-required traces are enabled by default, so that no
extra user configuration (of the platform_monitor parameter) is required. If these traces are
explicitly enabled, no harm will be done, but the configuration step is no longer required.

The ‘sensor_health’ trace message

ARM section

The ARM section contains health information about the sensor control system, sensor-sensor and
sensor-server protocols. It has several counters that show activity since the previous health
report. These can be used to understand the size of data flows in the system (e.g. bandwidth to
server, tag bandwidth at the sensor, sensor to sensor communications). It also includes more
advanced performance data that may be useful if analyzing a subsequent sensor error, but is not
valuable for normal field analysis.

This message is sent once a minute.

The health message is broken down as follows:

ARM

Health data from the sensor CPU (ARM)

|RECV s_arrays/scans/valid/meas/late
ScanArrays/Scans/ValidScans/Measurements/Late

The RECV section gives details about individual measurements the ARM has received over the
network or from the digital signal processor (DSP).

ScanArrays: the DSP sends measurements to the ARM in bulk messages called ScanArrays. This
value is the number of messages the ARM has received from the DSP.

Scans: the number of measurements the ARM has received from the DSP. For example, if there are
four measurements per full ScanArray and the ARM has received six half-full ScanArrays, then the
ARM has received twelve measurements.

3

DIMENSION4 trace messages

Valid Scans: the number of measurements which had a valid scan. Approximately half the
measurements will not have been scanned because the sensor has a high-resolution decoder
which can perform accurate scans to get fine TDOA data and angle data, and a low-resolution
decoder which does not. The measurements from the low-resolution decoder are currently not
used.

Measurements: the number of measurements received from the network.

Late: the number of measurements (local or received via the network) that were too late to be
included in processing for that beacon.

|SENT rem_meas/fltr_sets/fltr_meas
Measurements/FilterInputSets/FilterMeasurements

This SENT section gives details about what the ARM has sent over the network or to the DSP.

Measurements: the number of measurements the ARM has sent to other sensors over the
network.

FilterInputSets: the ARM sends measurements to the DSP to be filtered in sets, with each set
containing all the measurements gathered for a particular tag beacon event. This value is the
number of sets sent to the DSP.

FilterMeasurements: the total number of measurements sent to the DSP to be filtered. For
example, if every tag is seen by exactly five sensors, this value should be equal to FilterInputSets
multiplied by five.

|FILTER lp_sets/res/seq/drpd_sets
SetsDroppedLowPower/FilterResults/FilterSequenceHints/DiscardedFilterSets

The FILTER section describes the data flows in/out of the filter (from the ARM’s perspective). This
is for tags where this sensor is acting as the ‘master’.

SetsDroppedLowPower: the number of sets of messages which were dropped due to power
thresholding.

FilterResults: the number of filter results received by the ARM.

FilterSequenceHints: the number of messages which tells the ARM which filter sets have been
filtered.

DiscardedFilterSets: the number of filter sets which have been discarded (for example, if the filter
queue is too big).

|SENT loc_v2/loc_v3 SentLocationMessagesV2/SentLocationMessagesV3

4

DIMENSION4 trace messages

This SENT section shows counts of data messages sent to the server.

SentLocationMessagesV2: the number of location messages sent to the location cell manager.

SentLocationMessagesV3: the number of location messages (these include the measurement data)
sent to the logging server.

|FAILED meas/loc_v2/loc_v3
SendMeasurementFailures/SendV2Failures/SendV3Failures

The FAILED section shows counts of low-level network send failures.

SendMeasurementFailures: the number of measurements sent to other sensors which failed to
send.

SendV2Failures: the number of location messages sent to the location cell manager which failed to
send.

SendV3Failures: the number of location messages sent to the logging server which failed to send.

|STATE alloc_meas/fq_sets/fq_meas
AllocatedMeasurements/FilterQueueSets/FilterQueueMeasurements

The STATE section shows the current state of various buffers.

AllocatedMeasurements: the number of measurements currently allocated.

FilterQueueSets: the number of filter sets which have been sent to the DSP to be filtered for which
the ARM is still waiting for a filter result.

FilterQueueMeasurements: the number of measurements in the queued filter sets.

|HWM AllocatedMeasurements/FilterQueueSets/FilterQueueMeasurements

The HWM section lists high-water-marks (i.e. the highest value seen since the last message) for
the values in the STATE message (see above).

|MSGQALLOC: for each channel i with alloc errors: #i: AllocErrors[i]
(if there are no errors) (no errors)

The MSGQALLOC section gives the total number of errors encountered whilst allocating messages
to communicate with the DSP. For each message type, this section gives the number of allocation
errors (if a message type has no errors then it is omitted). If there have been no errors then this
section has the text “(no errors)”.

MEM HWM/RSS Memory HWM/MemoryResidentSetSize
or if not able to retrieve memory monitor statistics: (get use err)

5

DIMENSION4 trace messages

The MEM section gives information on the ARM’s memory usage. If unable to retrieve the usage
statistics this section prints an error message.

HWM: the high-water-mark for the memory used by the ARM application.

MemoryResidentSetSize: the current memory used by the ARM application.

| LOOP free/sent/loop_errs/lb_errs
SlotsFree/SlotsSent/LoopErrors/LoopBufferErrors

The LOOP section shows the current state of the message loop between the ARM and DSP. The
message loop is used to send some messages to/from the DSP. If there are no slots free, then this
will cause problems.

SlotsFree: the current number of slots in the message loop which are free (to be allocated).

SlotsSent: the current number of slots in the message loop which have been sent to the DSP.

LoopErrors: the number of errors in the message loop.

LoopBufferErrors: the number of errors in the message loop buffer.

DSP section

The DSP section contains information about the DSP and the underlying hardware. In general the
data is for advanced analysis only. However the ‘HEALTH load:’ percentage will give an idea of
the remaining processing capacity, and the TS section will give an idea of the performance of the
timing subsystem.

This message is sent once a minute.

| DSP

Health data from the DSP.

|TASKS for each task: TaskNameActivityCount

The TASKS section shows the number of times each task has run. This can be useful to debug
unusual situations.

| UPP for each stage in the data pipeline: StageCount

The UPP section shows the message counts for each stage in the data pipeline from the receiver
through to sending the measurement to the ARM.

| FILTER for each stage in the filter pipeline: StageCount

6

DIMENSION4 trace messages

The FILTER section shows the message counts for each stage in the filter pipeline.

| MSGALLOC: for each channel i with alloc errors: #i: AllocErrors[i]
(if there are no errors) (no errors)

The MSGALLOC section gives the total number of errors encountered whilst allocating messages
to communicate with the DSP. For each message type, this section gives the number of allocation
errors (if a message type has no errors then it is omitted). If there have been no errors then this
section has the text “(no errors)”.

| HEALTH load: DSPProcessorLoad %

The HEALTH section shows the current load on the DSP in percent.

LOOP free/sent MessageQueueLoopSlotsFree/MessageQueueLoopSlotsSent

The LOOP section shows the current state of the message loop between the DSP and ARM. The
message loop is used to send some messages to/from the ARM. If there are no slots free, then this
will cause problems.

MessageQueueLoopSlotsFree: the current number of slots in the message loop which are free (to
be allocated).

MessageQueueLoopSlotsSent: the current number of slots in the message loop which have been
sent to the ARM.

MEM used/size/blkfree MemoryUsed/MemorySize/LargestFreeBlock

The MEM section shows the current state of the DSP’s memory.

| DRIFT ClockDriftMicroseconds

The DRIFT section shows the accumulated clock drift in microseconds.

| TS ok/sht/lng NormalTimeslotCount/ShortTimeslotCount/LongTimeslotCount

The TS section shows statistics about the timing subsystem. If ShortTimeslotCount or
LongTimeslotCount are increasing, this may indicate a problem.

| CFAR min-max threshold/raw/stripped/real w1-w2/x1-x2/y1-y2/z1-z2

The CFAR section shows the minimum and maximum CFAR values since the last DSP health
message for four ranges of values: CFAR threshold w1-w2, raw bits x1-x2, stripped bits y1-y2, and
real bits z1-z2.

7

DIMENSION4 trace messages

| RADIO installed
| RADIO absent

If the trace contains the | RADIO installed section then the sensor has a working radio; if the
trace has the | RADIO absent section then no radio is installed.

Additional Periodic DSP health information

An additional message is sent out once every three minutes with DSP health information:

|TEMP nrDAC/nrRX TempNearDAC/TempNearReceiver

TempNearDAC: temperature near the DAC in Celsius

TempNearReceiver: temperature near the receiver in Celsius

|DSP|glbl_stack GlobalStackBytesUsed

GlobalStackBytesUsed: number of bytes used in the global stack

|<Task> mode/sp/used/handle
TaskMode/TaskStackPtr/TaskUsedStackBytes/TaskHandleAddr

For each task:

TaskMode: the current mode of the task

TaskStackPtr: the stack pointer address

TaskUsedStackBytes: the number of bytes used in the task’s stack

TaskHandleAddr: the address of the task handle

|PPM cnt/no_f/no_l/insuf
PacketCount/NoPulsesFirstPart/NoPulsesLastPart/NotEnoughPulses

PacketCount: the count of packets considered

NoPulsesFirstPart: the count of packets with no pulse in the first part of the packet

NoPulsesLastPart: the count of packets with no pulse in the last part of the packet

NotEnoughPulses: the count of packets with not enough pulses

|CABLE unsync/ok/1/>1
UnsyncedBits/ErrorFreeBytes/SingleErrorBytes/MultipleErrorBytes

UnsyncedBits: (unused)

8

DIMENSION4 trace messages

ErrorFreeBytes: bytes which were error free

SingleErrorBytes: bytes which had a single bit error

MultipleErrorBytes: bytes which had multiple bit errors

|LOOP_ERRORS buf/loop TotalLoopBufferErrors/TotalLoopErrors

TotalLoopBufferErrors: the number of errors in the message loop buffer.

TotalLoopErrors: the number of errors in the message loop.

Location system information messages enabled by default

Trace option ‘boot’

This option traces operation of the boot server. The message formats are:

boot: Boot configuration server listening on address

boot: Boot configuration server setting intended versions for
kernel/filesystem/firmware to KernelVersion/FSVersion/FirmwareVersion

boot: Sensor mac requested configuration (v ProtocolVersion) at
address, returning INVALID (server in test mode)

boot: Sensor mac requested configuration (v ProtocolVersion) at
address, returning OK, kernel: KernelVersion/KernelLength/KernelCRC,
fs: FSVersion/FSLength/FSCRC, firmware:
FirmwareVersion/FirmwareLength/FirmwareCRC, nextaddr:
BootServerAddress

boot: Sensor mac requested configuration (v ProtocolVersion) at
address, returning OK/kernel_KernelVersion/fs_FSVersion/addr/kcrc_
KernelCRC/fcrc_FSCRC

boot: Sensor mac requested filename at address

9

DIMENSION4 trace messages

boot: Sensor mac completed request for filename at address

Trace option ‘ls_sink_info’

This option traces location sink configuration. It can be used to check for whether the persistent
or nonpersistent sensor status storage is enabled. The message formats are:

ls_sink_info: Location sink for cell cell not storing status
persistently.

ls_sink_info: Location sink for cell cell storing status
persistently.

Trace option ‘ls_sink_stats’

This option traces the messages received by the location sink server. It prints a single trace
format that can contain counts for different protocol messages:

ls_sink_stats: cell_ received message_counts

Trace option ‘ls_sink_time’

This option traces the time synchronization protocol that is controlled by the location sink. It has
a single message format:

ls_sink_time: TIME SYNC SERVER: client time = tsm.client_time_ (
tsm.client_time_.seconds() s tsm.client_time_.remainder_nanoseconds()
ns) server = tsm.server_time_ (tsm.server_time_.seconds() s
tsm.server_time_.remainder_nanoseconds() ns) send to address

Trace option ‘logging_server_stats’

This option traces the messages received by the logging server (excluding trace messages). It
prints a single trace format that can contain counts for different sensor messages. In the current
version the only message type supported is ULocationSystem::Messages::LocationMessageV3-
Sensor (i.e. a location message from a sensor).

10

DIMENSION4 trace messages

logging_server_stats: cell received message_counts

Trace option ‘tftp_report’

This option gives a report of the TFTP server embedded within the boot server. It has a single
message format:

boot_server: XFERS ok/failed: ok / failed CONNS lwm/curr/hwm: lwm /
curr / hwm RRQ drpd: drpd LOSS_INDICATORS rrq_dup/retries/ack_
old/ack_fut: rrq_dup / retries / ack_old / ack_fut

XFERS ok/failed: running total of counts of transfers which successfully completed or failed.

CONNS lwm/curr/hwm: the low-water-mark, current and high-water-mark for the number of
active connections. By default the boot server has a maximum of 32 concurrent connections. The
lwm and hwm counts are measured since the previous tftp_report message.

RRQ drpd: the number of file transfer requests dropped due to reaching the limit on concurrent
connections.

LOSS_INDICATORS rrq_dup/retries/ack_old/ack_fut: various statistics that might indicate lost
packets: rrq_dup = duplicate file requests, retries = number of retried server sends, ack_old =
number of stale acknowledgement packets, ack_fut = number of extremely old acknowledgement
packets.

Location system information messages disabled by default

Trace option ‘ls_upstream_info’

This option traces the timing cable topology discovery process. The message formats are:

ls_upstream_info: cell_ got upstream_info.upstream_mac_ port
upstream_info.upstream_port_ -> upstream_info.mac_(found downstream
sensor ? . : (did not find downstream sensor))

ls_upstream_info: cell_ got upstream_info.upstream_mac_ port
upstream_info.upstream_port_ -> upstream_info.mac_(found upstream
sensor ? . : (did not find upstream sensor))

11

DIMENSION4 trace messages

ls_upstream_info: cell_ got upstream_info.upstream_mac_ port
upstream_info.upstream_port_ -> upstream_info.mac_(update needed ? .
: (skipping server update))

ls_upstream_info: parameter_name changed for downstream_mac to trace_
value

ls_upstream_info: Reported parameter_name changed for downstream_mac
to trace_value

Trace option ‘ls_sink_tag_data’

This option traces the receipt of telemetry data from tags. It has a single message format:

ls_sink_tag_data: Location sink for cell cell_ received tag data for
msg.tag_id_ at msg.time_ with values TagDataPrinter(msg.values_)

Trace option ‘tftp_info’

This option traces the transfer of boot files using TFTP. It emits about five messages per transfer,
and has the following formats:

tftp_info: boot_server: creating connection for client_address
requesting filename with blocksize blocksize.

tftp_info: boot_server: sending OACK for client_address requesting
filename with blocksize blocksize.

tftp_info: boot_server: connection for client_address (requested
filename) transitioning to state WAITING_FOR_OACK_ACK.

tftp_info: boot_server: connection for client_address (requested
filename) transitioning to state WAITING_FOR_DATA_ACK.

12

DIMENSION4 trace messages

tftp_info: boot_server: destroying connection for client_address
(requested filename) as sending OACK exceeded maximum retries.

tftp_info: boot_server: destroying connection for client_address
(requested filename) as sending DATA exceeded maximum retries.

tftp_info: boot_server: destroying connection for client_address
(requested filename) as error packet received.

tftp_info: boot_server: destroying connection for client_address
(requested filename) as transfer has completed.

tftp_info: boot_server: destroying old connection for client_address
(requested filename) as client has new request.

tftp_info: boot_server: destroying connection for client_address
(requested filename) as server unable to get file data.

Sensor information messages enabled by default

Trace option ‘sensor_init’

This option traces sensor initialization. The message formats are:

sensor_init: Components OK, will request config from address (our
protocol address is address)

sensor_init: Config Manager OK

sensor_init: Configuration received OK

sensor_init: Detected receiver type receiver_type

13

DIMENSION4 trace messages

sensor_init: DSP config OK

sensor_init: DSP ready, waiting for time sync

sensor_init: DSP time sync OK

sensor_init: DSP-controlled hardware OK

sensor_init: GPP-side IPC OK

sensor_init: Initial IPC OK

sensor_init: Initialisation complete

sensor_init: IPC Loop OK

sensor_init: LEDs, Resetter OK

sensor_init: Opening sensor routing channel

sensor_init: Opening UWB channel

sensor_init: Sending config to DSP

sensor_init: Time synchronisation OK

sensor_init: Waiting for DSP hardware initialisation

14

DIMENSION4 trace messages

sensor_init: Waiting for DSP to be ready

sensor_init: Watchdog OK

Trace option ‘sensor_info’

This option traces various sensor behaviors. Normal message formats are:

sensor_info: Clearing local CNC as it is invalid.

sensor_info: Requested firmware upgrade not necessary: version
flashed_firmware_version_ is already flashed

sensor_info: Requested software upgrade not necessary: version
flashed_kernel_version_ / flashed_fs_version_ is already flashed

sensor_info: Successfully re-assigned MAC from
settings_.instruction_.old_mac_ to settings_.instruction_.new_mac_ .
Will now reboot.

sensor_info: timing is stable

sensor_info: Updating CNC status from remote_cnc_state.status_ to
local_cnc_status .

sensor_info: Updating local CNC from local_cnc to requested remote_
cnc_state.cnc_ .

sensor_info: Upgrading firmware from flashed_firmware_version_ to
desired_version successful, will now reboot.

15

DIMENSION4 trace messages

sensor_info: Upgrading firmware from flashed_firmware_version_ to
desired_version

sensor_info: Upgrading flashed software from flashed_kernel_version_
/ flashed_fs_version_ to desired_kernel / desired_fs successful, will
now reboot.

sensor_info: Upgrading flashed software from flashed_kernel_version_
/ flashed_fs_version_ to desired_kernel / desired_fs

Message formats that probably indicate problems are:

sensor_info: timing is UNSTABLE

sensor_info: DSP health timeout, resetting sensor

Trace option ‘sensor_warning’

This option traces is used to deliver non-serious warnings about time synchronization. If network
delays are very high, then the network-based time synchronization protocol will lose accuracy.
This is not a problem in this version of the software because a sensor doesn’t use timestamps
from other sensors as part of its location protocol, but it is included in case we wish to use
timestamps in this way in future versions. Normal message formats are:

sensor_warning: Time synchronisation: estimated network delay is
value .

Sensor fatal error messages
These messages are sent by a sensor in response to an unrecoverable error; the sensor will then
reboot. Message formats are:

fatal: >1 AD9783 instance

16

DIMENSION4 trace messages

fatal: >1 AMChannelReference instance

fatal: >1 CCxx10 instance

fatal: >1 ClockGeneration instance

fatal: >1 FPGA instance

fatal: >1 hamming error but decoded nibble not 255.

fatal: >2 ADF4002 instances

fatal: >2 ADT7302 instances

fatal: AD9783 BIST failed (data1 = ad9783_result)

fatal: AD9783 initialisation timeout (data1 = reg)

fatal: AD9783 SH calibration failed (data1 = ad9783_result)

fatal: AD9783 SH calibration outside normal range (data1 = ad9783_
result , data2 = settings_.sh_calibration_max_ x 1000 + settings_.sh_
calibration_min_)

fatal: Assert CNC status failed

fatal: Assert EEPROM info failed: query processor EEPROM failure

fatal: Assert EEPROM info failed: query receiver EEPROM failure

17

DIMENSION4 trace messages

fatal: Assert EEPROM info failed: remote operation error

fatal: Boot file CRC error. (data1 = calculated_crc , data2 =
expected_crc)

fatal: CC2510 bad chip ID

fatal: CC2510 version error

fatal: CCxx10 SPI xfer size too big (data1 = size_in_16_bit_words)

fatal: CCxx10: bad chip id (data1 = chip_id_)

fatal: CCxx10: unknown chip id (data1 = chip_id_)

fatal: CCxx10: verification error

fatal: Clock count assertion (data1 = CLK_countspms())

fatal: Config component registration too late

fatal: Config establish timeout. Sensor will now reboot.

fatal: Config registration request failed (server at config_server_
address) response: incompatible configuration request. Sensor will
now reboot.

fatal: Config registration request failed (server at config_server_
address) response: MAC mac() is not known. Sensor will now reboot.

18

DIMENSION4 trace messages

fatal: Config registration request failed (server at config_server_
address) unable to read response (error invoke_result->get_error()
). Sensor will now reboot.

fatal: Config registration request failed (server at config_server_
address) unknown response op_result . Sensor will now reboot.

fatal: Config registration request failed (server at config_server_
address). Sensor will now reboot.

fatal: data pipeline select fail (data1 = result)

fatal: EDMA3 initialise failed

fatal: emergency

fatal: error result reading active firmware page

fatal: Error committing active firmware page (data1 = eeprom_result)

fatal: Error detecting active firmware page (data1 = spi_result.first
, data2 = spi_result.second)

fatal: Error writing active firmware page (data1 = eeprom_result)

fatal: Failed firmware upgrade: downloaded kernel size mismatch,
expected available_length but file is firmware_buffer.written_size()
. Sensor will now reboot.

19

DIMENSION4 trace messages

fatal: Failed software upgrade: downloaded filesystem size mismatch,
expected available_fs_size but file is fs_buffer.written_size() .
Sensor will not reboot.

fatal: Failed software upgrade: downloaded kernel size mismatch,
expected available_kernel_size but file is kernel_buffer.written_size
() . Sensor will now reboot.

fatal: Failed to allocate IPCCheck message

fatal: Failed to assert name CRC (result= eeprom_result)

fatal: Failed to assert name length (result= eeprom_result)

fatal: Failed to assert name version (result= eeprom_result)

fatal: Failed to assert firmware page (data1 = eeprom_result)

fatal: failed to attach DSP: (data1 = status)

fatal: Failed to commit flashed software details to EEPROM (data1 =
eeprom_result)

fatal: Failed to commit phase 1 to EEPROM (data1 = eeprom_result)

fatal: Failed to commit phase 2 to EEPROM (data1 = eeprom_result)

fatal: Failed to download file filename from boot_server_address
for operation upgrade. Sensor will now reboot.

20

DIMENSION4 trace messages

fatal: failed to load DSP: (data1 = status)

fatal: Failed to retrieve boot configuration from boot_config_address
for operation upgrade. Sensor will now reboot.

fatal: failed to setup DSP: (data1 = status)

fatal: failed to start DSP: (data1 = status)

fatal: Failed to switch active firmware page. (data1 = spi_
result.first , data2 = spi_result.second)

fatal: Failed to unset firmware page (data1 = eeprom_result)

fatal: Failed to unset fs version (data1 = eeprom_result)

fatal: Failed to unset kernel version (data1 = eeprom_result)

fatal: Failed to verify written firmware CRC. (data1 = spi_
result.first , data2 = spi_result.second)

fatal: Failed to verify written fs CRC. (data1 = spi_result.first ,
data2 = spi_result.second)

fatal: Failed to verify written kernel CRC. (data1 = spi_result.first
, data2 = spi_result.second)

fatal: Failed to write firmware upgrade. (data1 = spi_result.first ,
data2 = spi_result.second)

21

DIMENSION4 trace messages

fatal: Failed to write fs upgrade. (data1 = spi_result.first , data2
= spi_result.second)

fatal: Failed to write kernel upgrade. (data1 = spi_result.first ,
data2 = spi_result.second)

fatal: fatal log init 1

fatal: fatal log init 2

fatal: fatal log init 3

fatal: fatal log init 4

fatal: fatal log init 5

fatal: Filesystem CRC mismatch. (data1 = spi_crc , data2 = available_
fs_crc)

fatal: Firmware CRC mismatch. (data1 = spi_crc , data2 = available_
crc)

fatal: Firmware version mismatch: intended version is desired_version
, but server at boot_server_address reports available version is
available_version . Sensor will now reboot.

fatal: FPGA INIT_B ready timeout

fatal: FPGA initialise failed

22

DIMENSION4 trace messages

fatal: FPGA MCB error (data1 = (ones_cnt_rxbuf_p_->subsequent_reset_
flag_ 9) | (ones_cnt_rxbuf_p_->mcb_calibration_done_ 8) | (ones_cnt_
rxbuf_p_->p2_mcb_rd_error_ 7) | (ones_cnt_rxbuf_p_->p3_mcb_rd_error_
6) | (ones_cnt_rxbuf_p_->p4_mcb_wr_error_ 5) | (ones_cnt_rxbuf_p_-
>p5_mcb_wr_error_ 4) | (ones_cnt_rxbuf_p_->p2_mcb_rd_overflow_ 3) |
(ones_cnt_rxbuf_p_>p3_mcb_rd_overflow_ 2) | (ones_cnt_rxbuf_p_->p4_
mcb_wr_underrun_ 1) | ones_cnt_rxbuf_p_->p5_mcb_wr_underrun_)

fatal: FPGA ones counter test pattern error (data1 = test_pattern)

fatal: FPGA PLL/DCM unlocked (data1 = 0)

fatal: FPGA PLLs and DCM failed to lock (data1 = 0)

fatal: FPGA programming failed

fatal: FPGA subsequent reset error (data1 = ones_cnt_rxbuf_p_-
>subsequent_reset_flag_)

fatal: Illegal config listener address

fatal: InitStatus alloc failure (data1 = state)

fatal: invalid init check

fatal: IPC add handler check failed (data1 = offset , data2 = msg_
max_count_)

fatal: IPC add handler duplication (data1 = (free_message ? 1000 : 0)
+ offset , data2 = msg_max_count_)

23

DIMENSION4 trace messages

fatal: IPC code sanity check failed (data1 = offset , data2 = msg_
max_count_)

fatal: IPC null handler (data1 = offset , data2 = msg_max_count_)

fatal: Kernel CRC mismatch. (data1 = spi_crc , data2 = available_
kernel_crc)

fatal: MAC assignment completion notification failed

fatal: No Location System Configuration Server registered. Sensor
will now reboot.

fatal: PRD assertion (data1 = CLK_getprd())

fatal: Processor Task: task_loop exited (data1 = result)

fatal: Receiver PLL unlocked (data1 = 0)

fatal: sample proc not configured

fatal: Sample Processor: coarse clock overflow (data1 = protocol_
data_packet.first_pulse_clock_count_ , data2 = protocol_data_
packet.first_pulse_ppe_number_)

fatal: Sanity checks failed.

fatal: Software version mismatch: intended version is desired_kernel
/ desired_fs , but server at boot_server_address reports available
version is available_kernel_version / available_fs_version . Sensor
will now reboot.

24

DIMENSION4 trace messages

fatal: SPI CRC failed (data1 = 0)

fatal: SPI CRC failed (data1 = 1)

fatal: SPI CRC failed (data1 = 2)

fatal: SPI CRC failed (data1 = 3)

fatal: SPI create channel failed

fatal: SPI xfer failed (data1 = device , data2 = length)

fatal: Timesync alloc error 1

fatal: Timesync alloc error 2

fatal: TimeSync info alloc failed

fatal: TimeSync init alloc failed

fatal: Timesync latency error

fatal: unable to cache network configuration from EEPROM

fatal: unable to cache Processor EEPROM values before re-assigning
MAC.

fatal: unable to cache processor EEPROM values: result

25

DIMENSION4 trace messages

fatal: unable to cache receiver EEPROM values: result

fatal: unable to commit cleared CNC to EEPROM. Error result .

fatal: unable to commit CNC changes to EEPROM. Error result .

fatal: Unable to comprehend boot configuration (data1 = source.get_
error() , data2 = buffer.written_size())

fatal: unable to detect flashed firmware version (data1 = result ,
data2 = firmware_page0_active_ ? 0 : 1)

fatal: unable to detect flashed fs version (data1 = result)

fatal: unable to detect flashed kernel version (data1 = result)

fatal: Unable to perform operation upgrade due to missing boot config
server parameter in configuration. Sensor will now reboot.

fatal: unable to query board identifier from Processor EEPROM

fatal: unable to query board identifier from Receiver EEPROM

fatal: unable to re-assign MAC address, error code result .

fatal: unable to reset gracefully. (data1 = 1 , data2 = result)

fatal: unable to reset gracefully. (data1 = 2 , data2 = result)

26

DIMENSION4 trace messages

fatal: unable to write CNC (DNS IP # i) to EEPROM. Error result .

fatal: unable to write CNC (DNS Suffix # i) to EEPROM. Error result
.

fatal: unable to write CNC (Gateway IP) to EEPROM. Error result .

fatal: unable to write CNC (IP) to EEPROM. Error result .

fatal: unable to write CNC (Search method # i) to EEPROM. Error
result .

fatal: unable to write CNC (Subnet mask) to EEPROM. Error result .

fatal: Unexpected FPGA programming result

fatal: Unknown AM channel threshold method (data1 = settings_.method_
)

fatal: Unknown AM channel threshold state (data1 = state_.machine_
state_)

fatal: unknown receiver type (data1 = receiver_type)

fatal: Unknown timing cable OTW decoder state (data1 = state_)

fatal: Unknown timing cable OTW encoder state (data1 = state_)

fatal: unrecoverable dsp fatal error

27

DIMENSION4 trace messages

fatal: UPP Ifc Task exited (data1 = result)

fatal: UPP initialise failed

fatal: UPP: error during read (data1 = result)

fatal: UPP: invalid packet source (data1 = pusher->protocol_data_
packet_.source_)

fatal: urgent handler emergency init 1

fatal: urgent handler emergency init 2

fatal: urgent handler not initialised.

fatal: Writer failed to locate ARM MSGQ reader

fatal: written results overflow (data1 = loop_state_.written_results_
)

Location system low-level debugging messages
There are many low-level tracing options available whose main purpose is debugging system
software operation. They should not normally be enabled but are included here to give an idea
of what could be traced in principle.

Trace option ‘boot_d’

This does extra tracing on the boot protocol.

boot_d: Adding boot file file version version

28

DIMENSION4 trace messages

boot_d: Sensor mac registering at address.get_name_local

boot_d: Sensor mac: sending filename (bytes bytes) to address

Trace option ‘ls_sink_liveness_d’

This traces the ‘server liveness timeout’ behavior.

ls_sink_liveness_d: cell is not a location cell

ls_sink_liveness_d: increasing timeout to minimum allowed (min
timeout) for geometry cell (was timeout)

ls_sink_liveness_d: no logging address associated with cell location
cell

ls_sink_liveness_d: parent cell is not a geometry cell for location
cell

ls_sink_liveness_d: parent cell not found for location cell

ls_sink_liveness_d: removing expiry time of expiry for location cell
because timeout is now set to zero

ls_sink_liveness_d: setting expiry time of time for location cell

ls_sink_liveness_d: setting location sink of address for location
cell

ls_sink_liveness_d: setting logging server of address for location
cell

29

DIMENSION4 trace messages

ls_sink_liveness_d: setting time server of address for location cell

Trace option ‘ls_timing_graph_d’

This traces the calculation of timing graphs.

ls_timing_graph_d: Finished timing graph for root

ls_timing_graph_d: Found route from root to v with delay delay,
variance variance

ls_timing_graph_d: Shortest distance from root to sensor is distance

ls_timing_graph_t: Calculated N delays

ls_timing_graph_t: Calculating delays with N timing root sensors

ls_timing_graph_t: Delay for sensor is delay (variance variance)

ls_timing_graph_t: Timing root sensor root

ls_timing_graph_t: Updated delay for sensor to delay (variance
variance)

Trace option ‘ls_timing_delay_checker’

This traces server-side solving of sensor orientations and cable delays.

ls_timing_delay_checker: check_cable_swaps

ls_timing_delay_checker: check_delays

30

DIMENSION4 trace messages

ls_timing_delay_checker: check_descriptors

ls_timing_delay_checker: check_estimated_positions

ls_timing_delay_checker: check_orientation_result_sensors

ls_timing_delay_checker: check_orientation_results_invalid

ls_timing_delay_checker: check_orientation_results_invalidated

ls_timing_delay_checker: check_orientation_results

ls_timing_delay_checker: check_orientation_solved

ls_timing_delay_checker: check_orientations

ls_timing_delay_checker: check_overrides

ls_timing_delay_checker: check_sensor_moves

ls_timing_delay_checker: check_sensor_swaps

ls_timing_delay_checker: check_timing_result_routes

ls_timing_delay_checker: check_timing_result_sensors

ls_timing_delay_checker: check_timing_results_invalid

31

DIMENSION4 trace messages

ls_timing_delay_checker: check_timing_results_invalidated

ls_timing_delay_checker: check_timing_results

ls_timing_delay_checker: check_timing_routes

ls_timing_delay_checker: check_timing_solved

ls_timing_delay_checker: check_valid_flags

ls_timing_delay_checker: Starting timing delay checker

ls_timing_delay_checker: sync_delays

ls_timing_delay_checker: sync_installation_properties

ls_timing_delay_checker: sync_positions

ls_timing_delay_checker: sync_valid_flags

Trace option ‘ls_referential_integrity’

This traces the object referential integrity checker.

ls_referential_integrity: Pruning all parameters that are not in a
set of N objects

ls_referential_integrity: Pruning all sensor-group pairs that are not
in a set of N objects

32

DIMENSION4 trace messages

ls_referential_integrity: Pruning parameters from a set of N objects

ls_referential_integrity: Pruning sensor-group pairs from a set of N
objects

ls_referential_integrity: Removing parameter for object

ls_referential_integrity: Removing sensor-group pair sensor / group

ls_referential_integrity: Starting location system referential
integrity checker

Trace option ‘ls_child_has_timing_issue_checker

This traces computation of the ChildHasTimingIssue flag.

ls_child_has_timing_issue_checker: asserting flag for mac value

ls_child_has_timing_issue_checker: on_current_status_changed(sensor,
status)

ls_child_has_timing_issue_checker: on_current_status_removed(sensor)

ls_child_has_timing_issue_checker: on_location_cell_changed(sensor,
location cell)

ls_child_has_timing_issue_checker: on_location_cell_removed(sensor)

ls_child_has_timing_issue_checker: on_upstream_sensor_changed(parent,
child)

33

DIMENSION4 trace messages

ls_child_has_timing_issue_checker: on_upstream_sensor_removed(parent,
child)

ls_child_has_timing_issue_checker: Sensor/Location Cell descriptor
not found

ls_child_has_timing_issue_checker: Sensor/Status/Error Flags
descriptor not found

Trace option ‘tftp_report_d’

This option contains all the data in the tftp_report (which is enabled by default) and some
additional information for debugging. It has one format:

tftp_report_d: boot_server: for each statistic statistic_name: count/current state

Configuration distribution

There are several distinct trace options for tracing the configuration distribution protocol.

N.B. The config distribution server checks the value of the platform_monitor variable
approximately every minute, and updates what trace streams are enabled. This means that the
config distribution servers do not need to be restarted to change which trace streams are
enabled. Additionally, the config distribution streams (i.e. streams starting with ‘ls_cfgdist’) all
output the server’s cell at the start of the message.

ls_cfgdist_actions: execute failed, but no state for action

ls_cfgdist_actions: execute failed, but old session for (old_session
/ new_session) action

ls_cfgdist_actions: execute failed, will retry for action

ls_cfgdist_actions: execute successful for action

ls_cfgdist_actions: execute successful, but no state for action

34

DIMENSION4 trace messages

ls_cfgdist_actions: execute successful, but old session (old_session
/ new_session) for action

ls_cfgdist_interests: operation : changed
reqs/sgrps/ns/ds/locs/geoms/macs reqs/sgrps/ns/ds/locs/geoms/macs

ls_cfgdist_interests_d: mac_count MACs interested in descriptor obj :
value

ls_cfgdist_interests_d: Descriptor changed: descriptor

ls_cfgdist_interests_d: getting establish for mac .

ls_cfgdist_interests_d: handling namespace_count changed namespaces
and descriptor_count changed descriptors.

ls_cfgdist_interests_d: handling changed requests for mac_count macs.

ls_cfgdist_interests_d: handling changed sensor groups for changed_
sensors_count sensors, changed_groups_count groups.

ls_cfgdist_interests_d: MAC requests don’t match group group :
differences

ls_cfgdist_interests_d: MAC requests match group group

ls_cfgdist_interests_d: MACHasRequest changed for mac

ls_cfgdist_interests_d: Namespace updated: namespace

35

DIMENSION4 trace messages

ls_cfgdist_interests_d: No MACs interested in descriptor obj

ls_cfgdist_interests_d: on_commit

ls_cfgdist_interests_d: on_establish

ls_cfgdist_interests_d: on_macs_changed

ls_cfgdist_interests_d: reload request for mac : created new group
new_mac_group with request_count requests (previous group: old_mac_
group).

ls_cfgdist_interests_d: reload request for mac : re-using group new_
mac_group (previous group: old_mac_group).

ls_cfgdist_interests_d: reload request: mac mac has no request,
removed from mac group group . New group size: new_size .

ls_cfgdist_interests_d: Sensor geometry cell changed: sensor sensor

ls_cfgdist_interests_d: Sensor location cell changed: sensor sensor

ls_cfgdist_interests_d: SensorHasMAC changed for mac

ls_cfgdist_interests_d: SensorInGroup change for sensor sensor group
group

ls_cfgdist_interests_d: unable to find group interests for mac
(group= group).

36

DIMENSION4 trace messages

ls_cfgdist_interests_d: unable to find mac group for mac .

ls_cfgdist_macs: operation [continuation] : #changed_macs= changed_
macs_count #changed_sensors= changed_sensors_count #added= added_
macs_count #removed= removed_macs_count #callbacks= callbacks_count
added= added_macs_set removed= removed_macs_set

ls_cfgdist_state: operation : macs_with_changed_interests= changed_
macs_count added_macs= added_macs_count removed_macs= removed_macs_
count changed_params= changed_params_count removed_params= removed_
params_count actions est/upd= establish_action_count / update_action_
count

ls_cfgdist_state_d: new state for mac resetting last service time

ls_cfgdist_state_d: Parameter param removed for object: macs_count
MACs interested

ls_cfgdist_state_d: Parameter param changed for object: macs_count
MACs interested

ls_cfgdist_state_dd: on_commit: deleting changes for mac as no
request found.

ls_cfgdist_state_dd: on_commit: ignoring changes for mac as no
management state.

ls_cfgdist_state_dd: on_commit: pushing update action for mac , with
updated_parameters_count updates, removed_parameters_count removals.

ls_cfg_server_cell_checker: checking cells: cell extents [not]
changed cell config [not] changed Sensor/Location Cell rows to check:
sensor_loc_cell_changed_count Sensor/Geometry Cell rows to check:

37

DIMENSION4 trace messages

sensor_geom_cell_changed_count Sensor/Status/Error Flags rows to
check: sensor_error_flags_changed_count Location Cell/Named rows to
check: loc_cell_named_changed_count Geometry Cell/Named rows to
check: geom_cell_named_changed_count

ls_cfg_server_cell_checker_d: cell named changed

ls_cfg_server_cell_checker_d: sensor error flags changed

ls_cfg_server_cell_checker_d: sensor geometry cell changed

ls_cfg_server_cell_checker_d: sensor location cell changed

ls_cfg_server_cell_checker_d: sensor position changed

ls_cfg_server_cell_checker_d: asserting required_cell for sensor as
required_cell_static_type

ls_cfg_server_cell_checker_d: cell config changed

ls_cfg_server_cell_checker_d: cell extents changed

ls_cfg_server_cell_checker_d: checking cells

ls_cfg_server_cell_checker_d: deleting required_cell_static_type for
sensor

ls_cfg_server_timing_root_d: adding sensor – sensor

ls_cfg_server_timing_root_d: adding sensor – upstream_sensor

38

DIMENSION4 trace messages

ls_cfg_server_timing_root_d: Build sensor upstream map

ls_cfg_server_timing_root_d: Calculating timing roots

ls_cfg_server_timing_root_d: considering sensor

ls_cfg_server_timing_root_d: followed timing tree but found no acting
TS, giving up

ls_cfg_server_timing_root_d: upstream sensor it->second is acting TS

ls_cfg_server_timing_root_d: upstream sensor it->second is not acting
TS

ls_config_server_reg_debug: SensorRegistrationServer::execute:
(register_sensor) result= (int)result

ls_config_server_reg_debug: SensorRegistrationServer::execute:
(unknown op= op)

ls_config_server_reg_debug: SensorRegistrationServer::execute:
assert_eeprom_values(EEPROMValuesPrinter(processor_values) ,
EEPROMValuesPrinter(receiver_values)).

ls_config_server_reg_debug: SensorRegistrationServer::execute: enter

ls_config_server_reg_debug: SensorRegistrationServer::execute: mac_
assignment_complete(instruction.old_mac_ -> instruction.new_mac_
processor instruction.processor_id_.manufacturer_info1_ /
instruction.processor_id_.manufacturer_info2_ /
instruction.processor_id_.manufacturer_info3_ receiver
instruction.receiver_id_.manufacturer_info1_ / instruction.receiver_

39

DIMENSION4 trace messages

id_.manufacturer_info2_ / instruction.receiver_id_.manufacturer_
info3_).

ls_config_server_reg_debug: SensorRegistrationServer::execute:
request.get_error()= request.get_error()

ls_config_server_reg_debug: SensorRegistrationServer::execute: set_
cnc_status(mac , cnc_seq , valid ? true : false)

Sensor low-level debugging messages
There are several low-level tracing options available whose main purpose is debugging sensor
operation. They should not normally be enabled but are included here to give an idea of what
could be traced in principle.

Trace option ‘sensor_cnc’

This is used to trace the custom network configuration protocol.

sensor_cnc: config_client_log: value

sensor_cnc: Ignoring invalid remote CNC = remote_cnc_state.cnc_ using
local = local_cnc

sensor_cnc: Local CNC == Remote CNC = remote_cnc_state.cnc_ .

sensor_cnc: Local CNC == Remote CNC == empty.

Trace option ‘sensor_config’

This is used to trace the configuration protocol.

sensor_config: change_message: changed= changed_params.size() ,
components= components.size()

40

DIMENSION4 trace messages

sensor_config: establish_message: params= message.parameters_.size()
, components= component_properties_.size() , notifier_comps=
notifier_components.size()

sensor_config: establish_message: prefix= message.prefix_.prefix_ ,
our_prefix= prefix_ , request.get_error()= request.get_error()

sensor_config: notifier: components= components.size()

sensor_config: unknown_message: request.get_error()= request.get_
error() , message_code= message_code

sensor_config: update_message: prefix= message.prefix_.prefix_ , our_
prefix= prefix_ , request.get_error()= request.get_error() , updated=
message.updated_parameters_.size() , removed= message.removed_
parameters_.size()

Trace option ‘sensor_sw’

This is used to trace the firmware and software flash update process.

sensor_sw: Flashed firmware/kernel/fs: flashed_firmware_version_ /
flashed_kernel_version_ / flashed_fs_version_

sensor_sw: No firmware upgrade requested.

sensor_sw: No software upgrade requested.

sensor_sw: Storing filesystem details in EEPROM (version/size/crc):
available_fs_version / available_fs_size / available_fs_crc

41

DIMENSION4 trace messages

sensor_sw: Storing kernel details in EEPROM (version/size/crc):
available_kernel_version / available_kernel_size / available_kernel_
crc

sensor_sw: Verifying filesystem CRC from SPI flash

sensor_sw: Verifying kernel CRC from SPI flash

sensor_sw: Writing filesystem to SPI flash

sensor_sw: Writing kernel to SPI flash

Trace option ‘tftp_sender’

This option traces the TFTP requests that the ARM makes to download new firmware or software
to write into flash.

tftp_sender: Requesting filename from address max_attempts send_
attempts timeout_period_ms timeout_in_ms adaptive_timeout adaptive_
timeout

tftp_sender: Request for filename from address has failed, received
block_count blocks.

tftp_sender: Request for filename from address has completed.

Location platform warning messages
Some important warning messages are provided by the underlying location platform libraries
and are common to all Ubisense services, including DIMENSION4 services.

Thread scheduling delays

These events will be reported if a process detects that it is not being scheduled promptly. For
example, if it requests a sleep of a certain length and is in fact woken up some time after the

42

DIMENSION4 trace messages

sleep time has expired, then this may cause a warning if the delay in waking the process up is too
large.

warning: slow thread scheduling in last interval s; count events;
mean mean_delay ms; max max_delay ms at time_of_max_delay

Disk write latency

Disk write latencies are reported if a process detects that the write operation took too long to
complete.

warning: immediate disk write latency report for ‘file_name’:
detected latency of latency_ms milliseconds doing operation (handle:
file_handle).

warning: periodic disk write latency report for ‘file_name’: highest
latency was stats_.max_interval_latency_ms milliseconds doing max_
interval_latency_operation in the last interval seconds (handle:
file_handle).

43

	DIMENSION4 trace messages
	The ‘sensor_health’ trace message
	ARM section
	DSP section
	Additional Periodic DSP health information

	Location system information messages enabled by default
	Trace option ‘boot’
	Trace option ‘ls_sink_info’
	Trace option ‘ls_sink_stats’
	Trace option ‘ls_sink_time’
	Trace option ‘logging_server_stats’
	Trace option ‘tftp_report’

	Location system information messages disabled by default
	Trace option ‘ls_upstream_info’
	Trace option ‘ls_sink_tag_data’
	Trace option ‘tftp_info’

	Sensor information messages enabled by default
	Trace option ‘sensor_init’
	Trace option ‘sensor_info’
	Trace option ‘sensor_warning’

	Sensor fatal error messages
	Location system low-level debugging messages
	Trace option ‘boot_d’
	Trace option ‘ls_sink_liveness_d’
	Trace option ‘ls_timing_graph_d’
	Trace option ‘ls_timing_delay_checker’
	Trace option ‘ls_referential_integrity’
	Trace option ‘ls_child_has_timing_issue_checker
	Trace option ‘tftp_report_d’
	Configuration distribution

	Sensor low-level debugging messages
	Trace option ‘sensor_cnc’
	Trace option ‘sensor_config’
	Trace option ‘sensor_sw’
	Trace option ‘tftp_sender’

	Location platform warning messages
	Thread scheduling delays
	Disk write latency

