
SmartSpace®
HMIs
From version 3.6

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: https://www.ubisense.com

https://www.ubisense.com/

Copyright © 2020, Ubisense Limited 2014 - 2020. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from
Ubisense at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.com

All contents of this document are subject to change without notice and do not
represent a commitment on the part of Ubisense. Reasonable effort is made to ensure
the accuracy of the information contained in the document. However, due to on-going
product improvements and revisions, Ubisense and its subsidiaries do not warrant the
accuracy of this information and cannot accept responsibility for errors or omissions
that may be contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AngleID® are registered
trademarks of Ubisense Ltd. DIMENSION4™ is a trademark of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/

Page i

Contents

Purpose of this Document 2

Introduction to HMIs 3

Requirements 3

Installing the HMIs feature 4

Configuring HMIs using the HMI Editor 5

Opening the HMI Editor 5

The HMI Editor 6

Creating a new HMI 7

Saving an HMI 8

Errors in the HMI 9

Reloading an HMI 9

HMI Settings 9

Options 9

Roles settings 10

History settings 11

Assets 12

Publishing an HMI 15

Viewing an HMI Version Outside the Editor 15

Exporting and Importing HMIs 15

Exporting HMIs 15

Importing HMIs 16

External Development Workflow 17

Setting up an External Development Server 18

Project Features for the External Development Workflow 18

Setting an HMI to use the External Development Workflow 19

Example of External Development Workflow with Vue CLI 20

Exporting/Importing HMIs with the Development Workflow 23

The HMI API 24

Page ii

Data Binding for Web Searches 24

Declarative Web Searches 24

Binding Web Search Results 26

Refreshing Searches 27

Data Binding for Reporting Queries 27

Declarative Queries 27

Parameters and Filters 28

Binding Query Results 29

Refreshing Queries 30

Using the API from Javascript 30

Callbacks 30

Using Bound Data in JavaScript 31

Setting Object Properties 32

Error Handling 33

Manual Vue Construction 33

Current User and Role 34

Built-in Components 35

Indicator component 35

Bar component 36

Gauge component 38

Map component 40

Report component 42

Parameters and Filters 44

API Examples 46

Simple Text Example 46

Various Progress Controls 47

Report, Map and Details 49

Styling Bars 53

Progress Rings 55

JavaScript Libraries 58

1

Purpose of this Document

Purpose of this Document
This document is a guide to the configuration and use of Ubisense SmartSpace HMIs (Human
Machine Interfaces), which is part of the Visibility. The intended audience includes users who
are:

l Installing HMIs into a SmartSpace system

l Developing custom HMIs for a SmartSpace system

l Users of HMIs

2

Introduction to HMIs

Introduction to HMIs
The HMIs feature allows custom web interfaces to be developed and deployed within the
Ubisense SmartSpace website. The feature provides administrators with an editor interface that
can be used to implement HMIs that are hosted by the SmartSpace system. The editor allows
interfaces to be tested and developed, with immediate results displayed. Once an interface is
working, it can be published to a set of SmartSpace roles.

A simple declarative binding API is provided to allow HMI content to be generated based on
web searches defined within SmartSpace. HMIs can interact with and control the business
objects and properties, using the same role-based authorization as other parts of the
SmartSpace platform. This allows many HMIs to be designed using only attributed HTML. The
API includes wrapped versions of the web map and web reports, so these can be embedded
into HMIs as required, provided they have been licensed.

From version 3.5, queries from the Reporting component can be used to generate content
using data binding in a similar way to web searches, again with role-based authorizations. This
can provide a more flexible approach than using the built-in report component.

For more advanced uses, CSS and JavaScript can be added to the interfaces. External assets, such
as images and script libraries, can also be hosted in the SmartSpace website for use in HMIs.
Interfaces can then be exported and imported, along with any referenced assets.

From version 3.6, SmartSpace HMIs support an external development workflow as an alternative
to the built-in HMI Editor allowing the use of more powerful editors and standard version
control. Setting up and using an external development workflow is described in External
Development Workflow.

Browser compatibility

SmartSpace Visibility features such as HMIs by default work with most recent browsers.
However, it is up to the developer of individual web interfaces to ensure that these are
compatible with their users' browsers.

Requirements
The HMIs feature requires a license for Visibility version 3.4 or higher (version 3.5 or higher for
data-binding with Reporting queries; version 3.6 or higher for the external development
workflow).

If the HMIs are to include reports, then the Reporting component must also be licensed.

3

Installing the HMIs feature

Installing the HMIs feature
To install the HMIs feature:

1. Make sure that the SmartSpace platform includes a license for the correct version of
Visibility.

2. Install the HMIs feature using Service Manager.

3. Upgrade the SmartSpace website to the same release version.

For further information on all aspects of installation, see SmartSpace Installation on the
Ubisense Documentation Portal or your SmartSpace Installation Guide.

4

Configuring HMIs using the HMI Editor

Configuring HMIs using the HMI Editor
There are three stages to building an HMI and making it available to users:

1. Creating the HMI in the HMI Editor, described in Creating a new HMI.

2. Adding it to roles, described in Roles settings.

3. Publishing a finished version, described in Publishing an HMI.

Opening the HMI Editor
In order to be able to define HMIs, you must be logged in to the website as a user with role
“Ubisense.SmartSpace.Administrator”. In SmartSpace Config use the USERS / ROLES task to add
a suitable user to this role. For further information on adding users to roles, see Users and roles
on the Ubisense Documentation Portal.

Now open a web browser and point it to the SmartSpace website. You should see a menu link
to HMIs in the top menu bar.

Click this link, and you should see an Edit button, which will take you to the HMI editor.

5

Configuring HMIs using the HMI Editor

The HMI Editor

The editor consists of a menu bar, three editor sections, a view frame, and a footer.

l The menu bar contains a dropdown to select the HMI to be edited; and buttons for
managing settings for the interface, the assets hosted by SmartSpace, and buttons to
save, publish and delete the interface.

l The editors are for HTML, CSS and JavaScript.

o Double-click in the title bar of an editor to enlarge it or return it to normal height.

o Drag the middle separator bar to make the editors wider or narrower.

6

Configuring HMIs using the HMI Editor

o The editors support syntax highlighting and some shortcut keys. Click the ? button
to see a quick help:

Key Action

Shift+Tab Auto-indent the current line or selected lines

Ctrl+Q Toggle comment for the current line or selected lines

Ctrl+Space Show completion hints for the current word in context

Ctrl+F Find a string in the editor. Enter the string to search, and press return to show the
first match. Use CTRL+G to search for more.

Ctrl+G Find the next instance of the string in the editor

Ctrl+S Save and view the interface – the same as clicking the Save button on the top menu
bar

o The editors also support undo and redo, and other standard text editing features,
using the normal key bindings for your computer (e.g. Ctrl+Z, Ctrl+Y on Windows).

l The footer is only shown once a saved HMI has been shown in the view frame, and
includes information about the currently viewed version of the HMI: the name, link,
version number, when it was saved, whether it is the published version, and a button to
refresh the view.

Creating a new HMI
To create a new HMI:

1. Choose <new HMI> from the dropdown in the menu bar.
Alternatively you can copy an existing HMI by selecting it in the dropdown, then clicking
Settings, and then Duplicate this interface.

2. In the Settings dialog, fill in the name of the HMI, description, and link.

7

Configuring HMIs using the HMI Editor

l The name and description will be visible to the users when the interface has been
published.

l The link should be a short word or phrase that can be used in the URL to get to the
interface once it has been published. It should contain no spaces or punctuation.

l You can also add a comment for internal notes. This will not be visible to users.

3. Click Apply to close the Settings dialog, and then click Save to write the interface back to
the system, and show the interface in the view frame.

Saving an HMI
To run an HMI in the view frame, you must save it back to the platform. Either click Save on the
menu bar, or press Ctrl+S. The current HTML, CSS and JavaScript, along with interface settings,
are written as a new version of the interface, and this version is loaded into the view frame.

Saved interfaces will be executable only by the administrator until they have been assigned to
roles and then published.

The platform keeps the last ten saved versions of each interface, as well as the currently
published version. Use the History tab in the Settings dialog to access older versions of the
interface. See HMI Settings for further information.

8

Configuring HMIs using the HMI Editor

Errors in the HMI
When the HMI is viewed in the editor, any error encountered will cause an error window to be
shown in red at the bottom of the screen. Click the arrow button to see a detailed error
message.

If the error is in the script, the editor will attempt to convert the line number to match the line
number in the script editor. This will only work if the DefaultAPI is used. See The HMI API.

You can also use the browser debugger to see more details about any error, insert breakpoints,
and step through code, etc. For many browsers, this is opened by pressing F12 while viewing
the page.

Reloading an HMI
If you want to reload the current version of an HMI, click the refresh button in the bottom right
of the footer:

This forces the view frame to reload without saving a new version of the interface. If you have
made any changes in the editor that have not been saved, they will not appear in the view frame.

HMI Settings
The Settings dialog is opened by clicking the Settings link on the menu bar. In addition to the
interface settings described in Creating a new HMI, there are tabs for options, roles and history.

Options

The Options tab contains the following settings:

9

Configuring HMIs using the HMI Editor

l The Use default API setting determines whether to include the default API for building
HMIs. If you need to create a hosted web page that contains no standard SmartSpace
HTML wrapper, JavaScript or CSS, clear this check box

l Selecting the Full screen option causes the HMI to occupy the full screen and hides the
main menu bar

l To use the external development workflow, enter the local URL of the main HTML
snippet as located on the external development web server. See External Development
Workflow for more information on setting this option

l Select Use map to get the web map component and supporting scripts in the external
development workflow

l Select Use report to use the reporting component and supporting scripts in the external
development workflow

Roles settings

The Roles settings tab allows you to specify the roles whose users will be allowed to visit an
HMI. To select a single role, click it in the list.

Hold down Ctrl and click to add multiple roles. Hold down Shift and click to add a consecutive
range of roles.

10

Configuring HMIs using the HMI Editor

In order for users to both access an HMI and view its contents successfully, in
addition to specifying the role that enables access to an HMI you must also ensure
that any search or query used by the HMI has also been added to the same role. For
further information on assigning roles, see Users and roles (for web searches) and
Defining Queries (for queries) on the Ubisense Documentation Portal.

History settings

The History settings tab allows you to see previous versions of the interface that have been
retained by the SmartSpace platform. In addition to the currently published interface, the
platform retains, by default, ten versions of each HMI. You can go back to a particular version by
clicking the Load button next to that version. This immediately loads the selected version and
shows it in the view frame. You can then edit the loaded HMI definition, and click Save to write
an updated version, which will be given a new version number.

11

Configuring HMIs using the HMI Editor

For example, with the above HMI, clicking Load next to version 4 will load the currently
published version of the interface. This can be edited and then saved, which will create a new
unpublished version number 34.

Assets
The assets dialog allows you to upload files such as images, JavaScript libraries or CSS files so
that they are hosted on the SmartSpace website. They can then be accessed via a URL, so you
can use them in your HMI definitions.

To manage assets, click the Assets button in the menu bar.

12

Configuring HMIs using the HMI Editor

There are two tabs in the dialog. The Use tab allows you to select from uploaded assets. A
preview of the selected asset is shown, and the URL used to access the asset from within an HMI
is also shown.

l Click Copy URL to copy the URL text to the clipboard.

l Click the Delete button to remove a selected asset.

Note: There is no attempt made to track references to assets within HMIs, so deleting
an asset that is used in a published HMI version will cause that HMI to break. Be
careful to only delete assets that are no longer required.

13

Configuring HMIs using the HMI Editor

The Create tab allows you to upload a file from your computer as a new asset definition.

Drag the file into the dialog to select it for upload. A name will be suggested, but can be
edited for clarity, and the mime type of the asset will be deduced. If drag doesn’t work, click
the Select file button to show a file dialog. Click Save to store the asset, then switch to the Use
tab to copy the URL for use in an HMI.

NOTE: Because asset data is stored in the SmartSpace platform, it takes up disk space
both on the server and cached on the website under IIS control. The platform cleans
up asset data when the asset is deleted. Thus when a large asset is no longer
required it is recommended that it should be removed to free up disk space.
However it is not recommended that you delete assets that are used in unpublished

14

Configuring HMIs using the HMI Editor

versions of HMIs that are still retained by the SmartSpace platform as this will break
those versions of the HMIs.

Publishing an HMI
Once you have tested the functionality of an HMI, and the HMI has been assigned to a set of
roles, you can publish the HMI. Only one version of a given HMI is published. This is the version
of the HMI that is presented to users when they navigate to the HMI. Only an administrator can
view unpublished versions of an HMI.

To publish an HMI, load the version of the HMI you want to publish, and then click Publish on
the menu bar. The footer will change to indicate that the version shown is the published version.

If you have not yet assigned any roles to the HMI, then it will not appear under HMIs
in SmartSpace Web.

Viewing an HMI Version Outside the Editor
To see what the currently loaded version of the HMI will look like outside the editor, click the
Visit link on the menu bar. You can hold down Ctrl to open in a new tab, or Shift to open in a
new window.

Exporting and Importing HMIs
There is a command-line tool to export and import HMI definitions to/from file. To get the
tool, run Application Manager, select the DOWNLOADABLES task, and select Visibility/HMI
configuration tool. Click Download.

If you have licensed the Rules engine developer, you can use the BUSINESS RULES workspace to
load HMIs (and any dependencies) that have been developed in other SmartSpace installations,
and you can export HMIs you have created, for use elsewhere. See the Module import and export
guide on the Ubisense Documentation Portal.

Exporting HMIs

To export HMIs, use the export mode. This writes the definition in JSON format. Use -h to
specify a particular HMI to export by name, otherwise all defined HMIs will be exported. Use -o
to write to a file. If you include -a, then the tool will look for assets used in the HMIs, and will
save the contents of all used assets to files in the current folder.

15

Configuring HMIs using the HMI Editor

$ ubisense_hmi_config.exe export -a -h "Andon" -o andon.json
export interface Andon
export asset CF052A0A5AC3331A29AB5BC000004F6400000096.asset

Importing HMIs

The tool can import a saved JSON file containing HMI definitions, and any referenced asset
files. Change directory to the folder containing the .json file and the .asset files, then use the
import mode. To import from a file rather than stdin, use -i. If the tool detects referenced
assets in the interface, it will attempt to load them from the current directory.

$ ubisense_hmi_config.exe import -i andon.json
import asset CF052A0A5AC3331A29AB5BC000004F6400000096.asset

import interface Andon

If you import an interface that currently exists in the SmartSpace platform, the exported version
will be restored. However it may be quickly cleaned up if too many retained versions with
higher version numbers have been saved. In this case, edit the JSON file to increase the version
number to a version higher than the maximum version number already present, then reimport
the HMI.

16

External Development Workflow

External Development Workflow
From release 3.6, SmartSpace HMIs support an external development workflow. In this
workflow, rather than edit HTML, CSS and JavaScript inside the HMI Editor, the developer works
using an external development environment, such as Vue CLI, that presents a website containing
the current compiled/minified version of an HMI. The external development toolchain can use
standard version control, and more powerful editors, to increase productivity.

The HMI Editor within SmartSpace watches this external development website for changes, and
automatically incorporates those changes into the current version of the edited HMI. The
developer can then publish the HMI when it is ready to be used.

An HMI that uses the external development workflow is configured with the URL from which it
should retrieve the main HTML snippet for the interface. The editor will load this snippet and
render the resulting HMI within its frame.

The editor now watches for relative assets loaded by the rendered HMI, such as images, scripts,
and CSS files. For example, the main HTML might load an image using a relative path:

17

External Development Workflow

The HMI Editor sees this request for a relative path asset, retrieves it from the development
server, and stores it in SmartSpace as a local asset for the current HMI version. It subsequently
polls the development server looking for changes to the main HTML snippet or any of the local
assets, and whenever one changes the whole HMI is refreshed in the editor.

Setting up an External Development Server
To use the external development workflow, the HMI you are editing must be available via a
development web server for SmartSpace to import. The import is performed by the HMI
Editor website, and this requires your development server to enable cross-site scripting (XSS)
access. This means that the server responses must include the following headers:

Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: If-Modified-Since, If-None-Match
Access-Control-Expose-Headers: ETag, Last-Modified

The first header allows the HMI Editor to access the resources served out by the development
web server, the second and third allow it to reliably detect changes to those resources. These
headers are only used by the HMI development workflow; they are not enabled for the HMI
when it is in production in SmartSpace.

Project Features for the External Development Workflow
For the external development workflow to work reliably, the following project features should
be used.

l Ensure that your project uses relative paths to access its assets (images, scripts, style
sheets), otherwise they will not be detected as local assets and will not be imported and
saved in SmartSpace.

l The main HTML file served out should not be wrapped in an “<html>” element. Instead
it should be a snippet such as a “<body>”. SmartSpace wraps the snippet you provide
inside an outer “<html>” document, with headers, style sheets, and references to the
HMI API. Having an “<html>” element nested inside another is not supported in some
browsers and is not recommended.

l To avoid JavaScript warnings and compilation errors, use window.UbiHMI rather than
UbiHMI so that the compiler knows this is an external class.

18

External Development Workflow

This is because the UbiHMI object is not known to the Vue CLI toolchain, because it is in
an externally-provided library (included by the SmartSpace server), so various warnings
are generated by the syntax and type checkers within the Vue CLI development
toolchain. However, UbiHMI is a global object, so it is actually equivalent to
window.UbiHMI, and the window global variable is known in Vue CLI. So using
window.UbiHMI prevents the warnings.

l Use dynamic ("lazy") loading of your main components, so that the HMI API is available
when your components are instantiated. Otherwise you might be unable to find key API
functions such as window.UbiHMI.mixin.

l In your main JavaScript file, instead of importing “Vue”, use the one already loaded as
window.Vue. The HMI API ensures that this version of the Vue library has all the API
components, such as ubi-map and ubi-report, imported and ready to use.

l Be careful with “hot reload” development servers, such as Vue CLI in development
mode. While the development mode Vue CLI server does work, it is not recommended
for this workflow because the HMI created will have all this development mode hot
reloading code. It is recommended to use production mode for this workflow, or to turn
off the “hot reload” in your project.

See Example of External Development Workflow with Vue CLI for a complete example of how to
set up a Vue CLI.

Setting an HMI to use the External Development Workflow
To use the external development workflow, create an HMI in the HMI Editor as normal (see
Creating a new HMI. Open the Settings dialog and go to Options to edit the Development
server URL option. Enter the local URL of main HTML snippet as located on the external
development web server. For example, using a Vue CLI project, where the HMI HTML snippet is
in index.html, this might be “http://localhost:8080/index”. Click Apply to save the setting, and
then click Save to write this back to SmartSpace.

The layout of the HMI Editor will now change. The HTML, CSS and Script editor panes will be
hidden, and the preview pane will fill the main editor window. If the URL entered was correct,
and the development server correctly configured, then the HMI will now appear within this
preview pane. The editor will now refresh the page and its assets if any of them change at the
development web server. The refreshing of assets can be seen in the bottom right pane of the
editor footer.

19

External Development Workflow

There are a few things to be aware of when using the external development workflow:

1. SmartSpace attempts to reduce the download size of an HMI by not including map and
report scripts and style sheets unless they are required Since the external development
workflow can dynamically load components that might use “<ubi-map>” or “<ubi-
report>” components, it is not possible for the editor to work out statically whether to
include these libraries. The settings page of the HMI Editor now includes options for
explicitly enabling map and report. See Options.

2. Because the HMI Editor can update the local assets for the current version of an HMI, the
“Publish” action now also saves a new version of the HMI after it has been
published. This protects the published version from being modified by mistake.

3. If your development web server is not running when you visit the HMI in the HMI Editor,
then the interface will not be displayed, and no changes will be loaded. This is not the
same as visiting the HMI outside the HMI Editor, where all the assets are served by the
SmartSpace website directly.

Example of External Development Workflow with Vue CLI
We will now go through a basic example using Vue CLI for the external development workflow.

l Set up a new Vue CLI project – run vue ui and in your browser visit the project
manager. Click “Create” and give the project a name. We will use “hmi” as the project
name.

l Go to your project “Configuration” page, and

o Set “Public Path” to the empty string ‘’, so that assets are linked with relative
paths. Click “Save Changes”.

o Click “Open vue config” at the top of the page, and in your editor, add the
required headers for the development server:

module.exports = {
 configureWebpack: {
 devServer: {
 headers: {

'Access-Control-Allow-Origin': '*',
'Access-Control-Allow-Headers': 'If-Modified-Since, If-None-

Match',

20

External Development Workflow

'Access-Control-Expose-Headers': 'ETag, Last-Modified'
 }
 }
 },
 publicPath: ''
};

l In your editor, under the public folder, edit index.html. This should be an HTML snippet
rather than a full web page, so remove all but the body:

<body>
<div id="app"></div>
<!-- built files will be auto injected -->

</body>

l In your editor, open the src folder, and edit HelloWorld.vue. Remove the default
generated markup, and Insert a map component:

<template>
<div class="hello">
<h1>{{ msg }}</h1>

<ubi-map ref="map" width="500px"></ ubi-map>

</div>
</template>

l In your editor, open the src folder and edit App.vue. Change the import to use dynamic
loading. This ensures that the Ubisense HMI will be available when your HMI module is
loaded:

…

21

External Development Workflow

<script>
const HelloWorld = () => import("./components/HelloWorld.vue");
…

l Edit the main.js file, and switch to using the preloaded Vue library, so that the Ubisense
API components are available.

…
// Import the Vue from SmartSpace to get the components.
var Vue = window.Vue;
import App from './App.vue'
…

l Go to your project “Tasks” page, and select “serve”:

o Click “Parameters”, and under Specify env mode select “production”. It is
probably wise to specify host “localhost” and port “8080”, so that the web server
doesn’t change port. Click Save.

o Now click “Run task” to start the development server.

l In SmartSpace, open the HMI Editor.

o Create a new HMI called “VueTest”. In the Interface tab of the Settings dialog, set
the link to “vuetest”.

o In the Options tab, enter the URL of the running development server main
snippet: http://localhost:8080/index.html

o Select Use map to get the web map component and supporting scripts.

o Click Apply, then Save the HMI.

You should see an HMI including a map in your HMI Editor. Editing the project in Vue, and
clicking save, will cause the changes to be imported into the HMI Editor automatically.

If you do need to run the Vue CLI server in development mode, turn on “disableHostCheck” in
your Vue config:

22

External Development Workflow

module.exports = { configureWebpack: {
 devServer: {
 …
 disableHostCheck: true
…
 }
 }
};

Also make sure you have set the hostname and port for the development server in its
“Properties” page.

Exporting/Importing HMIs with the Development Workflow
HMIs developed using the external development workflow can be loaded and saved, and
copied between platform datasets, using the standard tools.

l The current releases of the ubisense_hmi_config tool know about local assets for an
interface, and will save and load them if the -a flag is given.

l In SmartSpace Config, the Business rules Load and Save features include local assets
when saving and loading HMIs. See Module import and export for further information.

23

The HMI API

The HMI API
In this section we describe the default API that is provided to make it easy to generate HMIs
that interact with the SmartSpace business objects and properties. The API is based around the Vue.js
library, and provides a binding between HTML and the results of SmartSpace web searches
and, if the Reporting component is licensed, queries. The API also provides some built-in Vue
components that are useful for creating HMIs, and wraps the SmartSpace web map and
SmartSpace reports as components.

Data Binding for Web Searches
Data binding supports the creation of reactive data corresponding to the results of selected
SmartSpace web searches. It allows HTML elements, including the built-in components, to be
instantiated and have their attributes, properties, and contents bound based on the results of
those searches.

Declarative Web Searches

The simplest way to access web searches is to use the udm attribute on an element in your
HTML. The udm attribute takes a comma-separated list of data names and corresponding web
searches:

<div udm=”dataName: {search:'Web Search'}, dataName: {search:'Web Search'}, …”

The data names can be any legal JavaScript identifiers. The web searches must be valid web
searches defined in the SmartSpace platform. For information on how to define web searches,
see Web searches on the Ubisense Documentation Portal.

Within contents of this element, each dataName will be available as reactive data. The
following properties will be available to be bound – see Binding Web Search Results for how to
use these properties.

24

The HMI API

Property Contents

dataName.rows The rows returned by the search. These are updated at the refresh interval
configured for the web search. The keys of rows are the object identifiers, and the
values are:

l Summary – an array with one element for each summary property returned
by the web search

l R – internal representation data used by the map to render the object –
reserved for future use

dataName.selected When this property is set to a valid object identifier, such as one of the keys from
the rows above, this causes the details property to be set with the details results
for the web search.

dataName.details When dataName.selected has been set, this property receives the details results
for that object from the web search. The results are an array of value structures.
See below for the format of value structures.

So, declaring a udm attribute causes the API to fetch the results of the specified search, and
store them under “rows” in the specified data name, and also detect when selected is set and
update the details for the selected object. You can use this data by binding as described below,
or directly within your JavaScript.

Note that the search is run as the role under which the HMI page was loaded – it
must be available to that role or it will fail to return any results. For further
information on adding searches to roles, see Users and roles on the Ubisense
Documentation Portal.
Searches are executed for all views, so even objects with no location will be
returned.

The details property of a search contains an array of value structures. The fields in these value
structures depend on the type of the property returned, which is indicated by the Type field.
This is an integer with the following definitions:

25

The HMI API

Type Field
Value Contents of Value Structure

0 string property in value.String

1 date/time property in value.Date, which is UTC seconds since 1/1/1970, so you can create
a JavaScript using new Date(value.Date)

2 number in value.Number

3 object identifier in value.Id

4 boolean in value.Boolean

5 html/css color string in value.Colour

Binding Web Search Results

You can use standard Vue binding to use the data from web searches within the contents of the
element on which the udm attribute is set. Typically you will use:

l v-for to create an element for each row returned by the search

l v-bind (or “:”) to bind element attributes

l the “Mustache” syntax (double curly braces): {{ }} to bind properties into element content

l v-model to use a two-way binding between data and the value of a control

Vue.js binding is very powerful, and we do not cover all the possibilities here. See the online
documentation of Vue.js template syntax for more details.

For example, assuming there is a “Products” search defined, and the first summary result of the
search is the name of the product object, then the following HTML will result in a div for each
product containing the product name:

<div id="app" v-cloak udm="products:'Products'">
<div v-for="(row, key) in products.rows">
{{ row.Summary[0] }}

</div>
</div>

As another example with the same search, the following HTML creates a select dropdown
control where the text of each option is the name of the product, and the value is the product
object identifier:

26

The HMI API

<div id="app" v-cloak udm="products:'Products'">
<select>

<option disabled value="" >select a product </option>
<option v-for="(row, key) in products.rows" :value="key">
{{ row.Summary[0] }}

</option>
</select>

</div>

Note the use of the v-cloak attribute, which hides the contents of the div until the
data has been bound. This prevents the ugly template syntax from being shown to
the user.

Refreshing Searches

Searches automatically refresh at the same refresh interval as is configured in the web search (in
SmartSpace Config/WEB SEARCHES). They also refresh immediately after you call setProperty
(see Setting Object Properties). If you need to force a refresh otherwise, the Vue object also
includes a refreshSearches method that forces an update of the results of all bound searches.

Search details, returned if you have set the selected property on a bound search, will be
refreshed once per second.

Data Binding for Reporting Queries
Data binding also supports the creation of reactive data corresponding to the results of selected
Reporting queries. It allows HTML elements, including the built-in components, to be
instantiated and have their attributes, properties, and contents bound based on the results of
those queries.

Declarative Queries

The simplest way to access queries is to use the uquery attribute on an element in your HTML
with the query. The uquery attribute takes a comma-separated list of data names and
corresponding queries:

<div uquery=”dataName: 'Query Name', …”

The query names can be any legal JavaScript identifiers. The queries must be valid queries
defined in the SmartSpace platform. For information on creating queries, see Defining Queries
on the Ubisense Documentation Portal.

27

The HMI API

Within contents of this element, each dataName will be available as reactive data. The
following properties will be available to be bound – see Binding Query Results for how to use
these properties.

Property In/Out Contents

dataName.rows out An array of results returned from the query. Each row is an object
with properties for each result column.

dataName.count out The total number of results from the query (ignoring paging,
applying filters/values).

dataName.progress out The percentage progress of executing the query. Can be used for a
progress bar or indicator.

dataName.page in { Size: A, N: B }, defines the page size and page number to return. For
example { Size: 100, N: 3 } will return result rows 301-400. The default
Size is 100000, to avoid massive query results, but this can be
manually adjusted if necessary.

dataName.values in Parameters to pass to the report. See Parameters and Filters, below.

dataName.filters in Filters to pass to the report. See Parameters and Filters, below.

dataName.disabled in Set true to prevent execution of the query.

So, declaring a uquery attribute causes the API to fetch the results of the specified query, and
store them under “rows” in the specified data name. You can use this data by binding as
described below, or directly within your JavaScript.

Note that the query is run as the role under which the HMI page was loaded – it
must be available to that role or it will fail to return any results. For further
information on adding queries to roles, see Defining Queries on the Ubisense
Documentation Portal.

Parameters and Filters

To set parameters, the values attribute is used. The object can have one property for each
parameter of the report. The value of each property is an object { Type: T, Value: V }. For
example, with a dataName “steps”, you can set a string query parameter “BuildNo” as follows:

this.steps.values["BuildNo"] = { Type: "String", Value: 'AMN' }

The types supported are:

28

The HMI API

l String: Value is just a string

l Date: Value is the number of seconds UTC since 1st Jan 1970

l Double: Value is a number

l Bool: Value is true or false

To set filters, the filters attribute is used. The keys of the object are query names. The value for
each source is another object with keys corresponding to the column names of that source, and
values specifying the filter values. For example:

this.steps.filters["ProductProcessHistory"] = {
ProductName:'V12817',from:'one_week'}

For string columns, the value is just a substring. For date columns, the filter value can be one of
the predefined date range strings, or a custom date range object.

The predefined date range strings are:

this_year this_quarter this_month this_week today last_year

last_quarter last_month last_week yesterday forever two_years

one_year one_quarter one_month one_week one_day

A custom date range looks like this:

{
From: { Type: 'Time', Value: <sec since 1/1/1970 UTC> },
To: { Type: 'Time', Value: <secs since 1/1/1970 UTC> }

}

Binding Query Results

You can use standard Vue binding to use the data from queries within the contents of the
element on which the uquery attribute is set. Typically you will use:

l v-for to create an element for each row returned by the query

l v-bind (or “:”) to bind element attributes

l the “Mustache” syntax (double curly braces): {{ }} to bind properties into element content

l v-model to use a two-way binding between data and the value of a control

Vue.js binding is very powerful, and we do not cover all the possibilities here. See the online
documentation of Vue.js template syntax for more details.

29

The HMI API

For example, assuming there is a “Vehicle in Process Step” query defined, with results BuildNo
and ProcessStep, then the following HTML will result in a table row for each row containing the
build number and the process step:

<div id="wrapper" uquery="steps: 'Vehicle in Process Step'">
<div v-cloak>
<table>
<tr v-for="row in steps.rows" v-if="row.BuildNo">
<td>{{ row.BuildNo }}</td>
<td>{{ row.ProcessStep }}</td>

</tr>
</table>

</div>
</div>

Note the use of the v-cloak attribute, which hides the contents of the div until the
data has been bound. This prevents the ugly template syntax from being shown to
the user.

Refreshing Queries

Queries automatically refresh if you have specified a refresh interval when defining the binding
(see Manual Vue Construction). They also refresh if you change any of the input properties on
the bound data name, such as filters or values. If you need to force a refresh otherwise, the Vue
object also includes a refreshQueries method that forces an update of the results of all bound
queries that are not disabled.

Using the API from Javascript

Callbacks

There are two standard callbacks you can use in JavaScript to do things once the search data has
been set up.

The normal method is to use the udm-bound attribute on the same element you give a udm
attribute. This attribute takes a JavaScript function that will be called when the Vue.js data has
been created (but not yet retrieved or updated). The function receives an argument which is the
Vue instance that has been constructed for the element.

There is also a global function called when all Vue instances have been constructed and bound.
This is UbiHMI.loaded. Set this to a function that should be called, which takes a single

30

The HMI API

argument that is an array of Vue instances, one for each element with the udm attribute. For
example:

UbiHMI.loaded = function (vms)
{
// Do something with the instances in array vms
console.log(vms);

}

Alternatively, for more advanced cases, you can switch to manual Vue construction (see Manual
Vue Construction) which gives full control over lifecycle and data.

Using Bound Data in JavaScript

In order to use the bound data in JavaScript, you typically need to receive a notification when
the data values change. You can use one of the callbacks to register to watch when the bound
data changes. For example:

<div id="app" v-cloak udm="products:'Products'" udm-bound="onBound">
...
</div>

Then in JavaScript define the onBound function:

function onBound(vm)
{
vm.$watch("products.rows",function (newVal, oldVal) {
// do something whenever rows change
console.log(newVal);

});
}

Once you have got hold of the Vue instance, you can directly access the data on that instance.
For example:

// Get the current product rows.
var rows = vm.products.rows;
// Iterate over them.
for (var id in rows)
{

// Executes once for each product returned by the search,
// with id as the object identifier.
if (!rows.hasOwnProperty(id)) continue;
var cols = rows[id].Summary;
// do something with the summary columns.

}

31

The HMI API

Setting Object Properties

The Vue binding also provides support for setting properties of objects back into the
SmartSpace business objects and properties, just like the web map can set properties. The
properties must be settable by the role under which the HMI is running. For information on
configuring properties as settable see Making properties editable by roles on the Ubisense
Documentation Portal.

To allow this, each Vue instance has a setProperty method:

setProperty: function (obj, prop, val, onSuccess, onFailure)

The arguments are:

l obj: the object identifier, such as one of the keys from search rows

l prop: the name of the property to set, including namespaces

l val: the value to assign – this must be compatible with the type of the property

l onSuccess: optional callback when the property has been successfully written back to the
SmartSpace platform

l onFailure: optional callback on failure to set the property value – usually this will be
because the wrong property name was given, the object identifier is invalid, or the
current user is not a member of a role that can set the property. The function is called
with three arguments:

o operation: ‘set’

o property: the name of the property being set

o error: the response from the server

To get the names of properties, including namespaces, you can use:

ubisense_udm_exporter.exe –r

This will show the raw names of all properties.

Object identifiers will look something like this:

04007zP.Ubn5FP2v000LPm00030:UserDataModel::[Custom]Product

32

The HMI API

Error Handling

A global callback is provided for errors encountered when invoking searches, getting details, or
setting properties. To be notified of these errors, set UbiHMI.error to be a function that takes
the following three arguments:

l error: one of

o ‘searches’: could not get the list of searches available to the current role

o ‘auth’: a search is not available for the current role

o ‘search’: an error was encountered executing a search

o ‘details’: an error was encountered getting details for the selected object

o ‘set’: an error setting a property value

l property: the name of the property if any

l error: the response from the server if any

o status: HTTP return code, such as 400

o data: the data returned by the server, if any

Manual Vue Construction

For more advanced control of data, methods, watches, etc., you can take control of constructing
the Vue instances yourself, instead of using the declarative udm or uquery attributes. To make
this easy, the API provides a method to get a Vue “mixin” that provides all the web searchdata
binding functionality. This method is UbiHMI.mixin.

For example, the following uses JQuery document.ready mechanism to create a Vue once all
the DOM has been loaded, and bind to the “Products” search and “ProductHistory” query:

33

The HMI API

$(function () {

var vm = new Vue({
// The HTML element for this vue instance.
el: '#app-progress',
// Mix in the web search 'Products' as data field products, and the query

'ProductHistory' as data field history with a 60 second refresh interval.
mixins: [UbiHMI.mixin({ products: { search: 'Products'}, history: { query:

'ProductHistory', refresh: 60} })],
data: {

// Declare some extra data in addition to products
size: '',
message: ''

},
methods: { // your methods here }

});
...
});

Within the methods of this view class, you will have access to the bound dynamic data in
this.products and this.history.

For backward compatibility with previous syntax, the default binding is a web search, so the
following binds to a single web search called “Products”:

...
mixins: [UbiHMI.mixin({ products: 'Products' })],

...

Current User and Role

The Vue object also includes data bound to the logged in user and the role.

l vm.user: the user currently viewing the HMI.

l vm.role: the role under which the HMI was visited, if it was visited via the HMI chooser.
This may be undefined if the HMI was visited directly via its shortcut URL, or when the
HMI is loaded in the Editor.

For example, the following will print the user and role within an HMI:

<div v-cloak udm="{}">
User is {{ user }}

Role is {{ role }}

</div>

34

The HMI API

Built-in Components
The API includes built-in Vue components. All of these must be used inside a Vue element, so
either one with a udm attribute, or one for which you have constructed a Vue instance manually.

Indicator component

An indicator is a circular lamp that can be set to a given color and turned on or off, based on
bound data.

<ubi-indicator size="100"
:hue="row.Summary[3]"
:on="row.Summary[4]">

</ubi-indicator>

The indicator has the following attributes:

Attribute Type Default Description

on Boolean false The indicator is on when true.

hue Number 120 The hue of the indicator, in HSL color space. For example:

0 = red

60 = yellow

120 = green

180 = cyan

240 = blue

300 = magenta

size String 32px The width and height of the indicator.

35

The HMI API

Bar component

A bar is a partly filled horizontal or vertical bar, such as a progress indicator or line, optionally
with a label.

<ubi-bar width="100" height="30" units="%"
:ranges="[{from:80,colour:'#faa'}]"
:value="row.Summary[1]">

</ubi-bar>

The bar has the following attributes:

Attribute Type Default Description

value Number 0 The bar position, relative to min and max.

min Number 0 The value corresponding to an empty bar.

max Number 100 The value corresponding to a full bar.

units String If set, add a label in the center of the bar with the value followed by
this units string.

width String 200px The width of the bar including background.

36

The HMI API

Attribute Type Default Description

height String 40px The height of the bar including background.

show-
label

Boolean false Set this attribute to show a label even if units is empty. In javascript
this is property showLabel.

ranges Array [] Used to set the color of the bar based on the value. This is an array
of ranges, with the first matching range used as the color of the bar.
A range has a color (or colour) and an optional from and to value.
For example, the following are all valid:

{from: 20, to: 40, color: ‘blue’}

{from: 80, color: ‘#f00’}

{colour: ‘yellow’}

The latter matches regardless of the value, so only really makes
sense as the last item in ranges.

A range matches if (from <= value < to).

vertical Boolean undefined Normally the bar displays vertically if the width is less than the
height. This attribute can be used to override the bar direction
regardless of the dimensions.

You can use CSS to style elements of the bar such as the background color, font size, and
whether to draw borders. To style specifically the inner progress bar, target class “UbiHMI-bar”.
For example, to make the top of a vertical bar a solid white gap:

HTML:

<ubi-bar class="bar" width="30" height="100" show-label
value="61">

</ubi-bar>

CSS:

.bar .UbiHMI-bar {
border-top: 3px solid white;

}

37

The HMI API

Gauge component

A gauge is a radial or linear control with a needle, scale, and other optional elements such as
labels, numerical values, and a background panel rendering. The gauge component wraps the
canvas gauges library, and supports all the same options. It has some built-in layouts for easy
configuration.

<ubi-gauge :value="row.Summary[1]"
width="130" height="130" radial>

</ubi-gauge>

The gauge has the following attributes:

Attribute Type Default Description

value Number 0 The needle position, relative to min and max.

radial Boolean false True to draw a radial gauge, false for linear.

width Number 200 The width of the gauge in pixels.

height Number 200 The height of the gauge in pixels.

38

The HMI API

Attribute Type Default Description

layout String undefined Which of the built-in layouts to use – see below.

options Object { } Used to set canvas gauge options directly. This gives full control of
the gauge drawing. See the complete list of configuration options
for canvas gauges online (at time of writing, https://canvas-
gauges.com/documentation/user-guide/configuration)

Note: If you set options maxValue and minValue then you probably also need to set
majorTicks and highlights to match them.

The following layouts are provided:

bar dial

compass clean

39

https://canvas-gauges.com/documentation/user-guide/configuration
https://canvas-gauges.com/documentation/user-guide/configuration

The HMI API

semi line

ring

Map component

The map component encapsulates the SmartSpace web map, with control of displayed
elements. It allows the execution of searches, and generates an event when an object is
selected.

<ubi-map ref="map" width="100%" height="500px"
search="Products" :value="271"
@change="selectedObjectsChanged">

</ubi-map>

40

The HMI API

The map has the following attributes:

Attribute Type Default Description

search String The name of the search to use.

value String The parameter to use for the search input. Only searches with a single
input parameter are supported in this release.

width String 100% The width of the map.

height String 500px The height of the map.

details Boolean false If set then show the details panel in the map.

alerts Boolean false If set then show the alerts panel in the map.

searches Boolean false If set then show the searches panel, allowing other searches to be
used.

41

The HMI API

Attribute Type Default Description

details-
container

String When set to a CSS selector string, the map will render its details panel
into the first element matching that string, instead of using an internal
panel. Implies details: true.

alerts-
container

String When set to a CSS selector string, the map will render its alerts panel
into the first element matching that string, instead of using an internal
panel. Implies alerts: true.

default-
view

Object When set to an object, defines the default view to use when no objects
are selected. The object format is:

{ cx: <center x>, cy: <center y>, w: <width>, h: <height>, theta:
<rotation in degrees }

For example: <ubi-map :default-view=”{cx: 10, cy: 12, w: 20, h:20, theta:
0}”></ubi-map>

zoom-
scale

Number 6 When an object is selected for an auto-zoom search, the map zooms in
to the object. This scale determines how close the map zooms, with
smaller numbers meaning closer zooms.

The Change Event

The map emits the “change” event when the user selects an object, either by running a search
that returns a single object, or by clicking on one object from those returned by a search. This is
a Vue event so doesn’t “bubble” up the DOM from the map, and must be handled with
v-on:change or @change on the map component. The event argument is the selected object
id, and the event is also passed the map Vue component as a second argument. When the
object is deselected, the event is called with the object id undefined.

Report component

The report component allows a SmartSpace web report to be embedded in an HMI. See
Purpose of this guideSmartSpace Reporting where you can find information on configuring
reports, and also how to specify that a report is to be used only in an HMI and not within the
Reports screen in SmartSpace Web.

Usng the reports component, the report parameters and filters can be set, and an event is
generated when a returned row is clicked.

42

The HMI API

<ubi-report ref="report" class="reportClass"
report="History" no-header
:filters="{ProductProcessHistory:{

ProductName:search,from:'one_week'}}"
@change="selectedObjectsChanged">

</ubi-report>

The report has the following attributes:

43

The HMI API

Attribute Type Default Description

report String The name of the report to execute.

values Object {} The parameters to apply when executing the report. See below.

filters Object {} The filters to apply when executing the report. See below.

width String 100% The width of the map.

height String 500px The height of the map.

no-
header

Boolean false If set then hide the header of the report, including the title,
description, and parameter/filter controls.

Parameters and Filters

The parameters and filters are specified using an object passed as the values and filters
attributes.

For parameters, the values object is used. The object can have one property for each parameter
of the report. The value of each property is an object { Type: T, Value: V }. For example:

<ubi-report ref="report" report="Parts Shortages and Defects" :values="{'BuildNo': {
Type: 'String', Value: '225473'}}"></ubi-report>

The types supported are:

l String: Value is just a string

l Date: Value is the number of seconds UTC since 1st Jan 1970

l Double: Value is a number

l Bool: Value is true or false

For filters, the filters attribute is used. The keys of the object are source query names used in
generating the report. The value for each source is another object with keys corresponding to
the column names of that source, and values specifying the filter values. For example:

<ubi-report ref="report" report="Vehicle trail" :filters="{'Vehicle Location History': {
BuildNo: '496182', from: 'one_week'}}"></ubi-report>

For string columns, the value is just a substring. For date columns, the filter value can be one of
the predefined date range strings, or a custom date range object.

44

The HMI API

The predefined date range strings are:

this_year this_quarter this_month this_week today last_year

last_quarter last_month last_week yesterday forever two_years

one_year one_quarter one_month one_week one_day

A custom date range looks like this:

{
From: { Type: 'Time', Value: <sec since 1/1/1970 UTC> },
To: { Type: 'Time', Value: <secs since 1/1/1970 UTC> }

}

The Change Event

The report emits the “change” event when the user clicks a result row in a report table. This is a
Vue event so doesn’t “bubble” up the DOM from the map, and must be handled with
“v-on:change” or “@change” on the map component.

The event has two arguments – the data for the clicked row, and the report Vue component. The
first argument is the row data, and includes all the results from the query used for the table,
including results that were not bound to a table column. Thus it may be useful to include the
relevant objects in the query results even if they are not displayed to the user as raw identifiers,
so that the event handler can easily retrieve the object id for use elsewhere in the HMI when a
row is clicked.

As of this release there is no event generated when a report chart is clicked.

45

The HMI API

API Examples
In this section we will show some simple examples of HMI definitions, and walk through what is
happening in each line.

Simple Text Example
HTML:

This simple example uses only HTML.

<div udm='{"products": "Products"}'>
<div v-cloak v-for="(row, key) in products.rows">
{{ row.Summary[0] }} is in step {{ row.Summary[1].Name }}

</div>
</div>

The “Products” search is used,
and for each resulting row, we
create a div containing the
product name, and the name
of the step the product is in.
Note that the second result of
the search is an object type,
so it has an Id and a Name
field – here we use the Name.

The result looks like this:

46

The HMI API

Various Progress Controls
HTML:

The HTML uses the “Process Progress” web search, which returns an area name, a progress in
percent, the color of an indicator, and whether the indicator should be on or off.

<div class="outer">
<h2>Process area percent progress:</h2>
<div class="ui-widget-content" id="app-progress"

udm='{"progress": "Process Progress"}'>
<div v-cloak class="progress"

v-for="(row, key) in progress.rows">

We use v-for to create a div
for each area returned which
we cloak until bound.

<div class="area-label">{{ row.Summary[0] }}</div>
<div>
<ubi-gauge :value="row.Summary[1]" layout="clean">
</ubi-gauge>

</div>
<div>Completion: {{ row.Summary[1] }}%</div>
<ubi-indicator size="50px"

:hue="row.Summary[3]"
:on="row.Summary[4]">

</ubi-indicator>
<ubi-bar class="bar" width="30" :height="100" show-label

:ranges="[{from:80,colour:'#faa'}]"
:value="row.Summary[1]">

</ubi-bar>
</div>

</div>
</div>

Inside each div we insert:

l The process area name
as text

l A gauge bound to the
progress percent using
the built-in “clean”
layout

l A text version of the
progress percent

l An indicator based on
the hue and on/off
value

l A simple bar also
based on the progress
percent

We also give these elements
classes which will be used to
lay out and style the HMI in
the style sheet.

CSS:

47

The HMI API

.outer {
margin: 10px;
font-size: 1.2em;

}

.outer > * {
margin: 10px;

}

We style the outer div and the
main Vue div to add some
margin around the elements.

#app-progress {
display: flex;
flex-direction: row;
flex-wrap: wrap;

}

We use the flex layout method
(display: flex) to lay out the
process area divs in a row, and
use flex-wrap: wrap to make
the row wrap to another row if
the display is not wide enough.

.progress {
text-align: center;
width: 230px;

}

.progress > * {
margin: 10px;

}

Within each process area
“.progress” div, we set a width,
and also align text with the
center of the div.

.area-label {
font-weight: bold;

}
We set the area label to use
bold font.

.bar .UbiHMI-bar {
border-top: 3px solid white;

}

We style the top margin of the
bar component’s internal bar
to be a white border, giving a
gap between the bar and
background.

48

The HMI API

The result looks like this:

Report, Map and Details

This example shows a manual Vue creation, with a report, a map and a details table. We use
extra data and the v-model support in Vue, along with event handlers, to hook them together.

HTML:

49

The HMI API

<div class="outer">
<div class="ui-widget-content" id="app-report" v-cloak>

We create a div for
the app and cloak it.

<input id="searchName"
placeholder="Search for a product"
v-model.lazy="search">

Inside, we have a text
input with a model
bound using the lazy
modifier to the data
“search”. The lazy
modifier means that
the model is only
going to be set when
the user presses
Return or Tab or
otherwise moves
focus away from the
input control.

<div class="row">
<ubi-report ref="report" class="reportClass"

report="History" no-header
:filters="{ProductProcessHistory:{

ProductName:search,from:'one_week'}}"
@change="selectedObjectChanged">

</ubi-report>

We create a row
container, and in it
put a report using
the “History” report
with a filter bound to
use the data “search”
as the ProductName,
and to use a fixed
duration of one
week. Change events
are handled by the
method
selectedObjectChang
ed.

50

The HMI API

<div>
<ubi-map class="map" ref="map" height="400" width="400"

search="Products" :value="selectedName">
</ubi-map>

<div class="details">
<h2>Details</h2>
<table>
<tr v-for="row in products.details"

:data-title="row.Title">
<td> {{ row.Title }} </td>
<td> {{ convertValue(row) }} </td>

</tr>
</table>

</div>
</div>

</div>
</div>

</div>

We then add a new
div containing a map
running the
“Products” search
with value bound to
date “selectedName”.
The div also contains
a table with a row for
each detailed result
in the products web
search. The rows
show the title of the
row, and use a
converter function
“convertValue” to
turn the row value
into a suitable string.

Script:

51

The HMI API

$(function () {

The script uses the jquery document.ready
shortcut $(function () { … }) to
execute the contents when
the DOM has been fully
loaded, so all the class
libraries and APIs are
available.

var vm = new Vue({
el: '#app-report',
mixins: [UbiHMI.mixin({ products: "Products" })],
data: { search: '', selectedName: '' },

A Vue object is created and
attached to the app-report
element. We use the
UbiHMI.mixin to generate a
web search data binding for
the “Products” web search, as
data “products”. We then add
the two extra data properties
used in the HTML: “search”
and “selectedName”.

methods: {
selectedObjectChanged: function (selected, vm)
{
var s = undefined;
if (selected) {

s = selected.Product;
this.selectedName = selected.ProductName;

}

We implement the method
selectedObjectChanged that
handles the change event in
the report. If the selected row
data is defined, we get the
result “Product” which is the
project object identifier in this
report’s query. We also set the
selectedName data property
to be the “ProductName”
result from the query. This
causes the map to execute its
search using this product
name.

this.products.selected = s;
}

}
});

});

We then set products.selected
to be the object identifier that
was clicked. This causes the
products detail search to be
executed, which in turn will

52

The HMI API

populate the details table.
function convertValue(v)
{
if (v.hasOwnProperty('String'))
return v.String;

else if (v.hasOwnProperty('Number'))
return (v.Number === null) ? '' : new Number(v.Number);

else if (v.hasOwnProperty('Boolean'))
return v.Boolean ? '✔': '✘';

else if (v.hasOwnProperty('Date'))
return v.Date ? (new Date(v.Date)).toLocaleString() : '';

else
return "-";

}

Finally we implement the
convertValue function used in
the details table. Here we
decode the type of each detail
result and return something
appropriate to render to a
string in the table.

The result is a reactive report that can be searched from the input box, and when a row is
selected the corresponding product is shown in the map, and its details displayed below.

Styling Bars

This example shows some advanced styling for bars using CSS.

53

The HMI API

<div class="app" id="app-progress"
udm='{"progress": "Process Progress"}'>

<div v-cloak class="progress"
v-for="(row, key) in progress.rows">

<div class="area-label">{{ row.Summary[0] }}</div>
<ubi-bar class="bar" width="200" height="30" show-label

:ranges="[{from:80,colour:'#b44'}, {colour:'#4b4'}]"
:value="row.Summary[1]">

</ubi-bar>
</div>

</div>

We create some ubi-bars
based on a web search,
give them a class “bar”,
and set them to use
darker colors than
normal.

.bar {
border-radius: 0px 5px 5px 0px;
padding: 3px 3px 3px 0;
box-shadow: 3px 3px 5px gray;
background: #bbb;
color: white;

}

.bar .UbiHMI-bar {
border-radius: 0px 5px 5px 0px;

}

Then we use the
following style to give a
rounded right corner,
add some shadow,
padding, and make the
text label white to stand
out against the darker
colors. Note the CSS for
borders and padding
supports separate values
for “top right bottom
left”.

The result looks like this:

54

The HMI API

Progress Rings

The ring layout of the ubi-gauge provides a very clean and simple indicator of progress. The
following example shows some layout options, including how to place a simple label over the
middle of the gauge, and how to bind the color of the ring depending on the value. The HTML
looks like this:

<div class="app" id="app-progress"
udm='{"progress": "Process Progress"}'>

<div v-cloak class="progress"
v-for="(row, key) in progress.rows">

<div class="area-label">{{ row.Summary[0] }}</div>
<div>
<ubi-gauge class="dial" width="200" height="200" radial

layout="ring"
:options="{ colorBarProgress: (row.Summary[1]<80 ? 'green':

'red')}"
:value="row.Summary[1]">

</ubi-gauge>
<div class="progress-label">{{ row.Summary[1] }}</div>

</div>
</div>

</div>

Here we use
the
colorBarProg
ress option
from canvas
gauges
library to set
the bar color
to green if
the value is
less the 80,
and red
otherwise.
We wrap the
gauge and
the progress
label in a
single div, as
we intend to
put the label
on top of the
gauge using
CSS.

The CSS is relatively complex:

55

The HMI API

.app {
display: flex;
flex-wrap: wrap;
background: #f5f2f0;
justify-content: center;
padding: 10px;

}

The outer application div is displayed using the
flex layout so that the arrangement wraps
according to available screen width. The
content of each row is justified by centering.
Some padding is added around the screen
edges, and a subtle gray is used to make the
progress panels themselves stand out.

.progress
{
background: white;
margin: 15px;
padding: 10px;
box-shadow: 2px 2px 3px grey;

}

The progress panel background is white, and
some space is added around and inside to avoid
the layout appearing too cramped. A narrow
box shadow is added so they stand out from
the background.

.area-label {
font-size: 2em;
text-align: center;

}

The area label uses a large font and is centered
within the progress panel.

.progress-label {
position: relative;
font-size: 2.8em;
width: 5em;
text-align: center;
margin: 0 auto;
line-height: 0;
top: -100px;

}

The progress label uses relative positioning, so
it is placed relative to the previous object (the
end of the gauge). We give it a width and specify
that the text should be center aligned in that
width. We then give it an automatic left margin,
which moves it into the center of its parent div
horizontally. To place it vertically, we set a line-
height of zero, and offset the top by half the
height of the previous gauge component. This
causes the vertical center of the text to be on
the vertical center of the gauge.

The result looks like this:

56

The HMI API

If the width of the browser is not enough to show four progress panels across, it wraps and
centers like this:

57

The HMI API

JavaScript Libraries
The default API includes the following JavaScript libraries. The versions selected may not be the
most recent, but are known to work across the set of modern browsers supported by the rest of
SmartSpace Web. Currently this is Internet Explorer 9 and above, Chrome 26 and above, IOS 6
and above, Android 4.1 and above.

The versions of these libraries are subject to upgrade with subsequent releases of SmartSpace:

l Vue.js: 2.5.13

l Vue-resource.js: 1.3.5

l jquery: 1.11

l jquery-ui: 1.0.4

l datatables: 1.9.4

58

	Purpose of this Document
	Introduction to HMIs
	Requirements

	Installing the HMIs feature
	Configuring HMIs using the HMI Editor
	Opening the HMI Editor
	The HMI Editor
	Creating a new HMI
	Saving an HMI
	Errors in the HMI
	Reloading an HMI
	HMI Settings
	Options
	Roles settings
	History settings

	Assets
	Publishing an HMI
	Viewing an HMI Version Outside the Editor
	Exporting and Importing HMIs
	Exporting HMIs
	Importing HMIs

	External Development Workflow
	Setting up an External Development Server
	Project Features for the External Development Workflow
	Setting an HMI to use the External Development Workflow
	Example of External Development Workflow with Vue CLI
	Exporting/Importing HMIs with the Development Workflow

	The HMI API
	Data Binding for Web Searches
	Declarative Web Searches
	Binding Web Search Results
	Refreshing Searches

	Data Binding for Reporting Queries
	Declarative Queries
	Parameters and Filters

	Binding Query Results
	Refreshing Queries

	Using the API from Javascript
	Callbacks
	Using Bound Data in JavaScript
	Setting Object Properties
	Error Handling
	Manual Vue Construction
	Current User and Role

	Built-in Components
	Indicator component
	Bar component
	Gauge component
	Map component
	Report component
	Parameters and Filters

	API Examples
	Simple Text Example
	Various Progress Controls
	Report, Map and Details
	Styling Bars
	Progress Rings

	JavaScript Libraries

