
SmartSpace®
External Data Connector
From version 3.8.1
Part Number: SS_EDC_3.8.1_EN

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: https://www.ubisense.com

https://www.ubisense.com/

Copyright © 2023, Ubisense Limited 2014 - 2023. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from Ubisense
at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.com

All contents of this document are subject to change without notice and do not represent
a commitment on the part of Ubisense. Reasonable effort is made to ensure the accuracy
of the information contained in the document. However, due to on-going product
improvements and revisions, Ubisense and its subsidiaries do not warrant the accuracy of
this information and cannot accept responsibility for errors or omissions that may be
contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AngleID® are registered trademarks
of Ubisense Ltd. DIMENSION4™ and UB-Tag™ are trademarks of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/

Page i

Contents

Overview of the External data connector 2

Anatomy of the service 3

Overview 3

Glossary 4

Configuration workflow 4

Requirements 6

SmartSpace 6

Microsoft .NET Core 6

External Systems 6

JSON 6

XML 6

CSV 6

Single-field Data 7

Installing the External data connector 8

Configuring the External data connector 9

Creating the stream object 9

Creating Action Objects 10

Parameters for Stream Objects 11

Parameters for Actions 13

Starting Stream Services 16

Updating the configuration 16

Configuring Location Action Zones 17

Types and parameters 18

Types 18

Stream Types 18

Action Types 19

Zones 20

Parameters 21

Page ii

Stream Parameters 21

Action Parameters 30

Miscellaneous Parameters 37

Types and parameters tree view 38

Streams 39

Actions 42

Miscellaneous Parameters 45

Trace Messages 46

Understanding reports 46

data_connector stream 46

data_connector_debug stream 47

Ensuring EDC HTTP Listener Streams are Implemented Securely 50

Identity language 51

JSON 51

XML 51

CSV 52

Single-field data 52

Tag namespaces 53

Supported Namespace Prefixes 53

Supported protocols 54

Protocols 54

HTTP(S) connector 54

HTTP(S) receiver 54

Web socket connector 54

TCP 54

SQL 55

File 55

Formats 55

Text formats 55

JSON 55

Page iii

XML 56

CSV 57

Single-field data 57

Example: Connecting a Quuppa tracking system to SmartSpace 59

Overview 59

Connecting the SmartSpace EDC to Quuppa using the getTagPosition method 59

Creating the Stream Object 59

Creating the Action Object 61

Connecting the SmartSpace EDC to Quuppa using the getTagData method 66

Creating the Stream Object 67

Creating the Action Object 68

1

Overview of the External data connector

Overview of the External data connector
The External data connector (EDC) is a service for collecting location and/or property data from
an external system and injecting it into SmartSpace. It supports a range of protocols for
connecting to external customer systems, including HTTP(S) queries (server and client), web
sockets (client), TCP (client), SQL (client) and file and allows imports in various formats, including
XML, JSON, CSV, and single-field, unformatted data.

Configuration is carried out entirely within the SmartSpace Config application and this guide
takes you through the configuration process step by step.

2

Anatomy of the service

Anatomy of the service

Overview

The External data connector has two main elements, Streams and Actions:

• A Stream is the stream of data from an external data source to the External data connector
within the Ubisense platform. A single external source may provide one or more streams.

• An Action is an operation that operates on a stream. This operation takes data from the stream
as input and sends information to the Ubisense data model or Ubisense Location services as its
output. Multiple actions can operate on a single stream.

These elements are configured in SmartSpace Config using object types of the same name.
Streams and actions objects can be defined in the TYPES / OBJECTS task in SmartSpace Config.

3

Anatomy of the service

You can use these objects to define the behavior of your streams and actions in the SERVICE
PARAMETERS task.

When you have finished configuring a stream service and are ready to deploy it, you set its
enabled parameter to true in the SERVICE PARAMETERS tab. This creates the Ubisense service
that manages that stream and its actions. The service is deployed, but you need to start it
manually using the Service Manager application.

Glossary

Term Definition Example

External
data
source

A non-Ubisense service or similar source that provides
data

HTTP server serving location
information in JSON format

Data
message

A complete message of one or more data fields A JSON message, received from
a server via a GET request,
containing location information

Data field A datum with some information useful to Actions.
Consists of an identity (name) and value in most data
formats

A name-value pair within a
JSON message, e.g.
“name”:”object1”

Identity The name or label of a data field, used to identify it in
source data

Fully qualified path name to a
JSON key-value pair.

Stream A stream of data messages from an external data source,
parsed to a format usable by the EDC services.
Encapsulates a connection to an external data source

JSON messages received by
periodically querying an HTTP
server with GET requests

Action An operation on stream data that interacts with the
wider Ubisense platform, often setting a UDM value or a
location

A property action that takes a
JSON value and sets a UDM
property to that value

Configuration workflow
Configuration is performed in SmartSpace Config and Service Manager. The configuration
process involves creating objects for stream and action types and setting service parameters for
them as follows:

4

Anatomy of the service

1. Create stream object(s).

2. Create action object(s).

3. Configure stream object parameters.

4. Configure action parameters.

5. Start stream services.

These steps are described in the sections that follow, using an example that involves setting up a
service to retrieve locations from an HTTP URL.

5

Requirements

Requirements

SmartSpace
The External data connector requires a license for RTLS integration version 3.5 or higher.

Microsoft .NET Core
On Windows, the External data connector requires Microsoft windows-core-req. For Linux
servers, you may need to install .NET Core: follow the instructions for Linux at
https://learn.microsoft.com/en-gb/dotnet/core/install/linux.

The External data connector requires Microsoft .NET Core 3.1.x. For Linux servers, you may need
to install .NET Core: follow the instructions for Linux at https://dotnet.microsoft.com/.

External Systems
External systems must use a supported format and protocol. Format specific requirements are
outlined below.

General format:

l Timestamps can be in an ISO 8601-compliant format or a UNIX epoch time

l Where the format supports it, values of null will be treated as the stream “null”. They will
otherwise be ignored.

JSON

All relevant data fields must be key-value pairs or values within an array at a fixed index. If the
data is nested, the same must be true for all parent objects of the data fields.

XML

Valid XML where data fields can be either attributes or elements.

CSV

CSV data should consist of one or more rows separated by line breaks, optionally starting with a
line/row of column headings. Columns are separated by commas by default but other character
(s) can be configured.

6

https://learn.microsoft.com/en-gb/dotnet/core/install/linux

Requirements

CSV data should consist of two or more rows separated by line breaks. The first row must start
with a line/row of column headings. Columns are separated by commas by default but other
character(s) can be configured.

Single-field Data

For unformatted/unlabeled source data. Each message should be a single string line in most
cases. Each line will be treated as a data field with the identity “field” (all lines will have the same
identity).

7

Installing the External data connector

Installing the External data connector
To install the External data connector feature:

l Make sure that the SmartSpace platform includes a license for RTLS integration version 3.5
or higher.

l Install the External data connector feature using Service Manager.

For further information on installing SmartSpace features see SmartSpace Installation on the
Ubisense Documentation Portal.

8

Configuring the External data connector

Configuring the External data connector
The following sections take you through setting up a connection to an existing HTTP server,
serving location data in JSON format, and using the EDC to set locations based on this data. The
process will involve creating a stream object ExampleHttpRequester stream, and the single action
associated with it. You will then see how to define the parameters for these types and how to
deploy the service.

For more details on the other stream and object options available to you, see the Types and
parameters.

Creating the stream object
You create stream objects using the Ubisense-supplied types in the TYPES / OBJECTS tab of
SmartSpace Config. Each external system connection requires its own stream object.

In this example we will only need one stream object, for our one HTTP server stream.

To create a stream object:

9

Configuring the External data connector

1. In SmartSpace Config, choose the TYPES / OBJECTS task.

2. Drag the required Stream type, HTTP Request Stream in this example, into the object
browser and double-click <Create new object>.

3. In the dialog, enter the object’s name, here ExampleHttpRequester, and click Save.

Creating Action Objects
You create actions in the same way you create stream objects.

We will need only one action object in this example, a Cartesian Location Action, which will set
object locations for us.

To create an action object:

10

Configuring the External data connector

1. In SmartSpace Config, choose the TYPES / OBJECTS task.

2. Drag an Action type, Cartesian Location Action in this example, into the object browser and
double-click <Create new object>.

3. In the dialog enter the object’s name, here ExampleLocationAction, and click Save.

Parameters for Stream Objects
Configuration of streams is performed in the SERVICE PARAMETERS task. Configuration involves
the following steps:

1. In SmartSpace Config, choose the SERVICE PARAMETERS task.

2. Choose the External data connector configuration, and then in the expandable type list
find the type of the stream object you just created, Http Request Stream in our case. (Use
the Expand All button to display the object hierarchy, if necessary.)

11

Configuring the External data connector

3. Drag this type into the object browser to display a window with all available objects of this
type. Double-click the stream object created above, ExampleHttpRequester, and click Edit
to edit its parameters.

4. Edit the parameters needed for this stream, setting the enabled flag to true when done.

12

Configuring the External data connector

The parameters offered depend on the kind of stream you have created. The complete list
of stream parameters for all stream types is given in Stream Parameters.

In our example, we have set the URI, format and enabled parameters, leaving the other
parameters with their default values.

5. Click Save.

Note: Stream services do not react to changes to stateful configuration parameters, for example
changes of address for TCP streams. We recommend that you always restart a stream service in
Service Manager after changing its parameters. See Starting Stream Services.

Parameters for Actions
Configuration of actions is performed in the SERVICE PARAMETERS task, similar to stream
configuration above.

To configure service parameters for an action:

1. In SmartSpace Config, choose the SERVICE PARAMETERS task.

2. Choose the External data connector configuration, and then in the expandable type list
find the type of the action object you just created, LocationAction in this example. (Use the
Expand All button to display the object hierarchy, if necessary.)

13

Configuring the External data connector

3. Drag this type into the object browser to display a window with all available objects of this
type. Double-click the action object created above, ExampleLocationAction in our case, to
display the available objects, and click Edit in the newly-opened window to edit its
parameters.

14

Configuring the External data connector

4. Edit the relevant parameters in this action. The parameters offered depend on the kind of
action you have created. The complete list of action parameters for all types of action is
given in Action Parameters.

Typically you will need to set several identity parameters with the names of data fields in
your source data so the action knows what data fields are relevant and what their value
represents.

In our example, we have configured the x, y, z identity parameters, telling our action that
the x Cartesian coordinate will be in a data field with name/identity of “x”. Because this data
is object data (not tag data), we have also asserted it is for the object type InjectionObject
with the object name in the data field named “name”. Lastly, we set the stream this action
should operate on, the ExampleHttpRequester stream we created earlier.

Note: by default for object data, the objects will need to have tags associated as the service
will only set the location of tags. If you wish to set object locations directly you will need to
change the injection mode parameter

5. Click Save.

15

Configuring the External data connector

Starting Stream Services
When a stream is enabled (by setting the enabled parameter to true, described above), a service
named after the stream object is created to manage that stream and its actions. This service is
deployed but not started: you must start it manually after configuration is complete.

To start the service for a stream:

1. In Service Manager, open the MANAGE SERVICES tab.

2. Run the Service Manager application.

3. Navigate to the service by opening Services > Ubisense autogenerated service > RTLS
integration and any enabled services are listed, identified by the name given to the stream
objects.

4. Navigate to the service by opening Services > Ubisense autogenerated service > RTLS
integration and any enabled services are listed, identified by the name given to the stream
objects. You can also type all or part of a steam name into the filter to navigate to it
directly.

5. Select the service and click Start.

In our example, we start the Ubisense autogenerated service::RTLS
integration::ExampleHttpRequester service.

If the service does not work, you can use the messages generated by the data_connector
and data_connector_debug trace streams to identify problems with the stream
configuration. See Trace Messages.

Updating the configuration

Stream services do not react to changes to stateful configuration parameters, for example
changes of address for TCP streams. We recommend that you always restart a stream service
after changing its parameters (by locating it, as described above, and clicking Restart).

Changes to actions should not require a service restart.

16

Configuring the External data connector

Configuring Location Action Zones
Inclusion/exclusion zones can be used with location actions to control what locations are injected.
After creating a Location Action Zone object in the Types and objects workspace, the
inclusion/exclusion shapes can be configured in the Spatial properties workspace. Locations inside
an exclusion shape will be ignored. When an inclusion shape is defined, locations outside the
shape will be ignored. A zone can have both an exclusion shape and inclusion shape with
exclusion shapes superseding inclusion shapes.

Zones should be stationary shapes. A stream can use one zone at a time.

17

Types and parameters

Types and parameters
This section lists the types available for use with the External data connector and the parameters
to configure them. The lists include the parent types on which the Ubisense types for the different
connection types are based. These are shown for information only: you should base your streams
and actions on the Ubisense types derived from them.

Types

Stream Types

Type Purpose

Stream Abstract base type for streams

Text Stream Abstract base class for text based streams

Text Listener
Stream

Abstract base class for text listener streams

HTTP Listener
Stream

Listens for POST/PUT HTTP(S) requests

See also Ensuring EDC HTTP Listener Streams are Implemented Securely for a
discussion of securing HTTP listener streams.

Text Connector
Stream

Abstract base class for text connector stream

HTTP Request
Stream

Retrieves data via periodic HTTP(S) GET requests

SQL Connector
Stream

Connects to a SQL database and queries for data

TCP Client Stream Connects to a TCP server socket and listens for data

Websocket
Connector Stream

Connects to a server via websockets and listens for data

File Reader Stream Reads data from a text file

18

Types and parameters

Action Types

Type Purpose

Action Abstract base type for all actions

Object Action Abstract base class for actions on object data

Object Tag
Action

Abstract base class for actions on object/tag data

Location
Action

Abstract base class for actions on object/tag location data

Cartesian
Location
Action

Injects object/tag locations from Cartesian (x/y/z) data

GPS Location
Action

Injects object/tag locations from GPS data

Fixed
Location
Action

Injects object/tag locations at a fixed position

Tag Battery
Action

Asserts tag battery status from parsed data

Property
Action

Sets UDM property values for objects based on parsed data

Association
Action

Associates unassociated parsed objects with free tags from a given range

Object
Creation
Action

Creates missing SmartSpace objects to match objects from parsed data. It is
recommended that you only have one Object Creation Action per External system

19

Types and parameters

Zones

Type Purpose

Location Action Zone Used to define inclusion/exclusion extents for location actions

GPS Reference Point Used to configure GPS coordinate conversion

GPS Reference Points

At least two GPS reference points are needed to convert GPS locations to the Cartesian
coordinates used by the platform. These coordinates are defined by creating GPS Reference Point
objects in the Types and objects workspace and then setting their x, y, latitude and longitude
values in SERVICE PARAMETERS.

When more than two GPS reference points are defined, only the two points closest to a parsed
location are used in the conversion. This should allow the use of GPS reference points when
multiple areas that are not geographically adjacent are placed adjacent on the map, so long as
there are at least two reference points for each area.

20

Types and parameters

Parameters

Stream Parameters

Parameter Type Purpose

arbitration time Stream Arbitration time in seconds. When set to a positive value, tag/object
locations must be newer by this amount than the most recent location
seen by the platform for that tag/object, else they will be ignored.

How arbitration time is used:

In the External data connector Arbitration time is used as follows.

Where:

A is arbitration time

X is the time of a new location seen by the service for a tag T

Y is the last time the platform saw the tag T

The location will only be injected if

X >= Y + A

Significant values for arbitration time are:

l 0 (or any negative number) = arbitration disabled

l 0.1 (or any small, positive number) = avoid injecting repeated
locations

l 10 (some larger number) = give priority to another system, i.e. if
you are using both Ubisense tags and an external GPS system,
give Ubisense tags priority

association
range mimimum

Stream For use with the association action. Mimimum tag id of the tag pool
available to the association action

association
range maximum

Stream For use with the association action. Maximum tag id of the tag pool
available to the association action

enabled Stream Enable/disable the stream service

max injection
rate

Stream Maximum rate (Hz) at which locations will be sent to Ubisense cells for
the service

21

Types and parameters

Parameter Type Purpose

max property
rate

Stream Maximum rate (Hz) at which properties will be set

persistent
location
injection

Stream Whether to ensure injected location events are persistent. Non-
persistent injection does not wait for confirmation from the location
cell but events may be silently dropped with large batches of locations.
The max injection rate parameter can help reduce the number of
dropped locations.

preserve
duplicate object
locations

Stream Enable when data contains duplicate objects/tags in a single message
and all historical locations must be preserved/injected

report interval Stream Interval between monitor of the service in seconds

use local culture Stream If true allows for parsing of data using local conventions; false uses EN-
gb conventions

csv delimiter Text Stream Delimiter used to separate values in CSV data. The service will use the
default for the current culture when unset

csv has headers Text Stream Set to false when the csv has no header row. [x] notation should be
used to specify column numbers for identities in this case.

format Text Stream Format of received data

query interval Text
Connector
Stream

Interval between HTTP queries in seconds

additional
headers path

HTTP
Request
Stream

Path to a file containing one or more HTTP headers to include in
requests

basic auth
password

HTTP
Request
Stream

Basic authentication password to use with HTTPS

basic auth
username

HTTP
Request
Stream

Basic authentication username to use with HTTPS

22

Types and parameters

Parameter Type Purpose

uri HTTP
Request
Stream

URI to query

sql connection
string

SQL
Connector
Stream

Connection string for the SQL server/database

sql query string SQL
Connector
Stream

The SQL query string for retrieving data

endpoint
address

TCP Client
Stream

Address of the TCP server socket to connect to

endpoint port TCP Client
Stream

Port of the TCP server socket to connect to

message end
regex

TCP Client
Stream

Regex used to identify end of a complete message from the server.
New line is used by default

initialisation
message path

Websocket
Connector
Stream

Stream Path to text file containing message(s) to send to the server
when the service connects. For use when the external system requires
an initialisation/subscription message before receiving data

password Websocket
Connector
Stream

Basic authentication password to use with the websocket

server url Websocket
Connector
Stream

URL to connect to

username Websocket
Connector
Stream

Basic authentication username to use with the websocket

23

Types and parameters

Parameter Type Purpose

listening url HTTP
Listener
Stream

One or more URLs to listen for clients on

listening url can be one URL, or a space-separated list of URLs. For
example the listener could be configured to accept requests sent to
localhost:4444 and proxy.external:8080 by specifying:

http://localhost:4444/ http://proxy.external:8080/

A trailing / is automatically added for each listening URL if it has been
omitted.

The listener will only accept a request if it is sent to an address
matching one of the URLs specified. For example "localhost" is not the
same as "127.0.0.1", and "hostname.domain" is not the same as
"hostname".

The hostname can use "*" or "*.mydomain.com", but this is less secure
than specifying an exact hostname in the URL.

A reverse proxy or firewall could be supported by specifying the
hostname of the proxy/firewall. So for the proxy.external example
above, a reverse proxy on server proxy.external might pass the request
on its port 8080 to hostname.internal:8080.

On Linux, to support an https primary end point set the listening url
something like "http://*:8008/endpoint", configure an Apache or
NGINX reverse proxy to forward the https request to
"http://127.0.0.1:8008/", and then use the firewall on Linux to block
anything sent to port 8008 from any other host. Requests to
"https://proxyhostname.domain/endpoint" will then be handled by the
External data connector listening at "http://127.0.0.1:8008/endpoint".

basic
authentication
username

HTTP
Listener
Stream

Username to use for basic authentication. Only requests using basic
authentication and matching this username will be accepted

basic
authentication
password

HTTP
Listener
Stream

Password to use for basic authentication. Only requests using basic
authentication and matching this password will be accepted

24

Types and parameters

Parameter Type Purpose

file path File Reader
Stream

File path to read from, for example “C:\Ubisense\file_reader_
source.txt”.

Show table sorted by parameter

25

Types and parameters

Parameter Type Purpose

additional
headers path

HTTP
Request
Stream

Path to a file containing one or more HTTP headers to include in
requests

arbitration time Stream Arbitration time in seconds. When set to a positive value, tag/object
locations must be newer by this amount than the most recent location
seen by the platform for that tag/object, else they will be ignored.

How arbitration time is used:

In the External data connector Arbitration time is used as follows.

Where:

A is arbitration time

X is the time of a new location seen by the service for a tag T

Y is the last time the platform saw the tag T

The location will only be injected if

X >= Y + A

Significant values for arbitration time are:

l 0 (or any negative number) = arbitration disabled

l 0.1 (or any small, positive number) = avoid injecting repeated
locations

l 10 (some larger number) = give priority to another system, i.e. if
you are using both Ubisense tags and an external GPS system,
give Ubisense tags priority

association
range maximum

Stream For use with the association action. Maximum tag id of the tag pool
available to the association action

association
range mimimum

Stream For use with the association action. Mimimum tag id of the tag pool
available to the association action

basic auth
password

HTTP
Request
Stream

Basic authentication password to use with HTTPS

26

Types and parameters

Parameter Type Purpose

basic auth
username

HTTP
Request
Stream

Basic authentication username to use with HTTPS

basic
authentication
username

HTTP
Listener
Stream

Username to use for basic authentication. Only requests using basic
authentication and matching this username will be accepted

csv delimiter Text Stream Delimiter used to separate values in CSV data. The service will use the
default for the current culture when unset

csv has headers Text Stream Set to false when the csv has no header row. [x] notation should be
used to to specify column numbers for identities in this case.

enabled Stream Enable/disable the stream service

endpoint
address

TCP Client
Stream

Address of the TCP server socket to connect to

endpoint port TCP Client
Stream

Port of the TCP server socket to connect to

format Text Stream Format of received data

initialisation
message path

Websocket
Connector
Stream

Stream Path to text file containing message(s) to send to the server
when the service connects. For use when the external system requires
an initialisation/subscription message before receiving data

27

Types and parameters

Parameter Type Purpose

listening url HTTP
Listener
Stream

One or more URLs to listen for clients on

listening url can be one URL, or a space-separated list of URLs. For
example the listener could be configured to accept requests sent to
localhost:4444 and proxy.external:8080 by specifying:

http://localhost:4444/ http://proxy.external:8080/

A trailing / is automatically added for each listening URL if it has been
omitted.

The listener will only accept a request if it is sent to an address
matching one of the URLs specified. For example "localhost" is not the
same as "127.0.0.1", and "hostname.domain" is not the same as
"hostname".

The hostname can use "*" or "*.mydomain.com", but this is less secure
than specifying an exact hostname in the URL.

A reverse proxy or firewall could be supported by specifying the
hostname of the proxy/firewall. So for the proxy.external example
above, a reverse proxy on server proxy.external might pass the request
on its port 8080 to hostname.internal:8080.

max injection
rate

Stream Maximum rate (Hz) at which locations will be sent to Ubisense cells for
the service

max property
rate

Stream Maximum rate (Hz) at which properties will be set

message end
regex

TCP Client
Stream

Regex used to identify end of a complete message from the server.
New line is used by default

password Websocket
Connector
Stream

Basic authentication password to use with the websocket

persistent
location
injection

Stream Whether to ensure injected location events are persistent. Non-
persistent injection does not wait for confirmation from the location
cell but events may be silently dropped with large batches of
locations. The max injection rate parameter can help reduce the
number of dropped locations.

28

Types and parameters

Parameter Type Purpose

preserve
duplicate object
locations

Stream Enable when data contains duplicate objects/tags in a single message
and all historical locations must be preserved/injected

query interval Text
Connector
Stream

Interval between HTTP queries in seconds

report interval Stream Interval between monitor of the service in seconds

server url Websocket
Connector
Stream

URL to connect to

sql connection
string

SQL
Connector
Stream

Connection string for the SQL server/database

sql query string SQL
Connector
Stream

The SQL query string for retrieving data

uri HTTP
Request
Stream

URI to query

use local culture Stream If true allows for parsing of data using local conventions; false uses
EN-gb conventions

username Websocket
Connector
Stream

Basic authentication username to use with the websocket

29

Types and parameters

Action Parameters

Parameter Type Purpose

stream Action The stream to act on

data root Object
Action

Identity of the element containing the relevant data in source data. For
nested data, e.g. complex JSON/XML

filter identity Object
Action

Identity of the filter field in source data. When set, data for objects not
matching the filter value will be ignored

filter value Object
Action

Accepted value for the filter

id identity Object
Action

Identity of the id field (the tag id or object name) in source data

id property Object
Action

Name of the SmartSpace property to match the ID identity value against in
object lookup. For when the id identity matches a property of the object
other than the unique name. The property must be unique.

object type Object
Action

When set, the ID identity is assumed to be an object name, otherwise ID
identity is assumed to be a tag. The type to use, together with the ID
identity, to determine which object from source data

tag id mask Object Tag
Action

Bitmask to apply (as a bitwise OR) to parsed tag IDs. Cannot be used with
tag id namespaces.

tag
namespace

Object Tag
Action

The namespace to use for non-Ubisense tag IDs. See Tag namespaces for
details

activity tag
range
maximum

Location
Action

Maximum tag boundary of the monitored tag range. Tags in this range will
have their activity set to inactive when unseen by the action for activity
timeout seconds

activity tag
range
minimum

Location
Action

Minimum tag boundary of the monitored tag range. Tags in this range will
have their activity set to inactive when unseen by the action for activity
timeout seconds

30

Types and parameters

Parameter Type Purpose

activity
timeout

Location
Action

Interval, in seconds, without the action seeing an object/tag before its
activity is set to inactive. The tag must be in the monitored range. When
this parameter is not manually set (or is set to a value <= 0 with 0 being
the default), the location action will not set the tag’s activity to active.

injection
mode

Location
Action

For object/non-tag source data. Determines how an action will set object
locations:

l inject tags only: the action will only inject tag locations. Objects
referred to by the data must have a tag associated. This is the
default setting.

l inject objects and tags: the action can inject object locations directly
when the object does not have a tags associated. Injection of tag
locations is still the preference and will be used instead when an
associated tag is available.

time format Location
Action

Custom format specifier for non-ISO 8601, non-unix timestamp
date/times. Details of suitable values can be found here
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-
and-time-format-strings?view=netframework-4.8

time identity Location
Action

Identity of time values in source data. Current time is assumed when this is
not set

time identity is the name of the field containing the time at which you wish
to inject the tag or object location (which depends on the injection mode).
Tags cannot meaningfully be injected more than 60 seconds in the past
(strictly they can be, but any associated object is not updated). From
version 3.7 SP1, retrospective injection is supported on objects.

transform left
handed

Location
Action

Set to true when the source system uses a left handed coordinate system,
i.e. the y coordinate needs to be negated to match the Ubisense
coordinate system

transform
offset x

Location
Action

Offset to add to the x coordinate of parsed locations (after applying
transform rotation)

31

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings?view=netframework-4.8

Types and parameters

Parameter Type Purpose

transform
offset y

Location
Action

Offset to add to the y coordinate of parsed locations

transform
offset z

Location
Action

Offset to add to the z coordinate of parsed locations

transform
pitch

Location
Action

Pitch rotation in degrees to apply to parsed locations

transform roll Location
Action

Roll rotation in degrees to apply to parsed locations

transform
yaw

Location
Action

Yaw rotation in degrees to apply to parsed locations

use local
timezone

Location
Action

Whether parsed times are assumed to be local or UTC times

zone Location
Action

Inclusion/exclusion zones to use

x identity Cartesian
Location
Action

Identity of the x coordinate field in source data

y identity Cartesian
Location
Action

Identity of the y coordinate field in source data

z identity Cartesian
Location
Action

Identity of the z coordinate field in source data

fixed x Fixed
Location
Action

Fixed x co-ordinate to use for injected locations

32

Types and parameters

Parameter Type Purpose

fixed y Fixed
Location
Action

Fixed y co-ordinate to use for injected locations

fixed z Fixed
Location
Action

Fixed z co-ordinate to use for injected locations

latitude
identity

GPS
Location
Action

Identity of the latitude field in source data

longitude
identity

GPS
Location
Action

Identity of the longitude field in source data

SmartSpace
property

Property
Action

Name of the SmartSpace property to set

property
identity

Property
Action

Identity of the field containing the property value

battery
identity

Tag Battery
Action

Identity of the battery status field in source data

failing values Tag Battery
Action

Comma-separated values to parse as failing

ok values Tag Battery
Action

Comma-separated values to parse as ok

unknown
values

Tag Battery
Action

Comma-separated values to parse as unknown

warning
values

Tag Battery
Action

Comma-separated values to parse as warning

Show table sorted by parameter

33

Types and parameters

Parameter Type Purpose

activity tag
range
maximum

Location
Action

Maximum tag boundary of the monitored tag range. Tags in this range will
have their activity set to inactive when unseen by the action for activity
timeout seconds

activity tag
range
minimum

Location
Action

Minimum tag boundary of the monitored tag range. Tags in this range will
have their activity set to inactive when unseen by the action for activity
timeout seconds

activity
timeout

Location
Action

Interval, in seconds, without the action seeing an object/tag before its
activity is set to inactive. The tag must be in the monitored range. When
this parameter is not manually set (or is set to a value <= 0 with 0 being
the default), the location action will not set the tag’s activity to active.

battery
identity

Tag Battery
Action

Identity of the battery status field in source data

data root Object
Action

Identity of the element containing the relevant data in source data. For
nested data, e.g. complex JSON/XML

failing values Tag Battery
Action

Comma-separated values to parse as failing

filter identity Object
Action

Identity of the filter field in source data. When set, data for objects not
matching the filter value will be ignored

filter value Object
Action

Accepted value for the filter

fixed x Fixed
Location
Action

Fixed x co-ordinate to use for injected locations

fixed y Fixed
Location
Action

Fixed y co-ordinate to use for injected locations

fixed z Fixed
Location
Action

Fixed z co-ordinate to use for injected locations

34

Types and parameters

Parameter Type Purpose

id identity Object
Action

Identity of the id field (the tag id or object name) in source data

id property Object
Action

Name of the SmartSpace property to match the ID identity value against in
object lookup. For when the id identity matches a property of the object
other than the unique name. The property must be unique.

injection
mode

Location
Action

For object/non-tag source data. Determines how an action will set object
locations:

l inject tags only: the action will only inject tag locations. Objects
referred to by the data must have a tag associated. This is the
default setting.

l inject objects and tags: the action can inject object locations directly
when the object does not have a tag associated. Injection of tag
locations is still the preference and will be used instead when an
associated tag is available.

latitude
identity

GPS
Location
Action

Identity of the latitude field in source data

longitude
identity

GPS
Location
Action

Identity of the longitude field in source data

object type Object
Action

When set, the ID identity is assumed to be an object name, otherwise id
identity is assumed to be a tag. The type to use, together with the ID
identity, to determine which object from source data

ok values Tag Battery
Action

Comma-separated values to parse as ok

property
identity

Property
Action

Identity of the field containing the property value

SmartSpace
property

Property
Action

Name of the SmartSpace property to set

stream Action The stream to act on

35

Types and parameters

Parameter Type Purpose

tag id mask Object Tag
Action

Bitmask to apply (as a bitwise OR) to parsed tag IDs. Cannot be used with
tag id namespaces.

tag
namespace

Object Tag
Action

The namespace to use for non-Ubisense tag IDs. See Tag namespaces for
details

time format Location
Action

Custom format specifier for non-ISO 8601, non-unix timestamp
date/times. Details of suitable values can be found here
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-
and-time-format-strings?view=netframework-4.8

time identity Location
Action

Identity of time values in source data. Current time is assumed when this is
not set

time identity is the name of the field containing the time at which you wish
to inject the tag or object location (which depends on the injection mode).
Tags cannot meaningfully be injected more than 60 seconds in the past
(strictly they can be, but any associated object is not updated). From
version 3.7 SP1, retrospective injection is supported on objects.

transform left
handed

Location
Action

Set to true when the source system uses a left handed coordinate system,
i.e. the y coordinate needs to be negated to match the Ubisense
coordinate system

transform
offset x

Location
Action

Offset to add to the x coordinate of parsed locations (after applying
transform rotation)

transform
offset y

Location
Action

Offset to add to the y coordinate of parsed locations

transform
offset z

Location
Action

Offset to add to the z coordinate of parsed locations

transform
pitch

Location
Action

Pitch rotation in degrees to apply to parsed locations

transform roll Location
Action

Roll rotation in degrees to apply to parsed locations

36

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings?view=netframework-4.8

Types and parameters

Parameter Type Purpose

transform
yaw

Location
Action

Yaw rotation in degrees to apply to parsed locations

unknown
values

Tag Battery
Action

Comma-separated values to parse as unknown

use local
timezone

Location
Action

Whether parsed times are assumed to be local or UTC times

warning
values

Tag Battery
Action

Comma-separated values to parse as warning

x identity Cartesian
Location
Action

Identity of the x coordinate field in source data

y identity Cartesian
Location
Action

Identity of the y coordinate field in source data

z identity Cartesian
Location
Action

Identity of the z coordinate field in source data

zone Location
Action

Inclusion/exclusion zones to use

Miscellaneous Parameters

Parameter Type Purpose

latitude GPS Reference Point Latitude of the reference point

longitude GPS Reference Point Longitude of the reference point

x GPS Reference Point Platform x coordinate of the reference point

y GPS Reference Point Platform y coordinate of the reference point

37

Types and parameters

Types and parameters tree view

38

Types and parameters

Streams

39

Types and parameters

40

Types and parameters

41

Types and parameters

Actions

42

Types and parameters

43

Types and parameters

44

Types and parameters

Miscellaneous Parameters

45

Trace Messages

Trace Messages
The External data connector has several trace streams to help monitor performance and spot
issues. These can be enabled using the platform_monitor configuration parameter.

The trace streams available are as follows:

l data_connector

Periodic messages giving an overview of the number/rate of events and errors occurring.
The rate of these messages is controlled with the report interval parameter.

l data_connector_debug

Verbose messages giving real-time information on received data and errors encountered.

Not recommended for regular use.

Understanding reports

data_connector stream

When enabled, the data_connector stream will output periodic reports summarizing the number
of events and errors that occurred over the report period. These reports are grouped by
action/component and look like the following:

46

Trace Messages

[01/08/2019 18:01:58] data_connector: HttpRequester: Reports for last 10
seconds:
[01/08/2019 18:01:58] data_connector: HttpRequester: 1 HTTP(S) requests
completed, 0 requests failed.
[01/08/2019 18:01:58] data_connector: HttpRequester: 1 JSON objects/arrays
deserialized, 0 deserialization errors, 0 errors parsing action root elements,
1 JSON objects passed to actions
[01/08/2019 18:01:58] data_connector: HttpRequester: 1 locations for
injection, 0 discarded as outside cells, 0 discarded due to arbitration
[01/08/2019 18:01:58] data_connector: HttpRequester: 1 properties for
settings, 1 discarded as value unchanged, 0 errors setting value
[01/08/2019 18:01:59] data_connector: HttpRequester: CartesianAction: 1
objects for parsing, with 0 object/tag retrieval errors, 0 removed by data
fields filter, 0 removed by location filter, 0 location/time parsing errors
[01/08/2019 18:01:59] data_connector: HttpRequester: PropertyAction: 1 objects
for parsing, with 0 object/tag retrieval errors, 0 removed by data fields
filter, 0 unrecognised SmartSpace properties, 0 property value parsing errors
[01/08/2019 18:01:59] data_connector: HttpRequester: TBAction: 1 objects for
parsing, with 0 object/tag retrieval errors, 0 removed by data fields filter,
0 status parsing errors

Each report has a similar format with the general format as follows:

l The first item in the report is the number of operations/attempts that occurred in this report
period

l Subsequent numbers are the number of these total operation/attempts that had
issues/errors

data_connector_debug stream

Following is an example of support for actions under data_connector_debug:

47

Trace Messages

data_connector_debug: Product Import: Http listener received "{
"id":"12365-567",
"project":"Broadsword",
"owner":"Andy"
}
"
data_connector_debug: Product Import: JsonParser::ParseValuesForActions
getting root ""
data_connector_debug: Product Import: JsonParser::ParseValuesForActions found
single object root ""
data_connector_debug: Product Import: JsonParser::ParseData evaluating actions
using input values: id:12365-567, project:Broadsword, owner:Andy
data_connector_debug: Product Import: ObjectCreationAction/Blade Creation:
queueing request: 12365-567
data_connector_debug: Product Import: PropertyAction/Blade-Owner: needed non-
nil but found nil object id for 12365-567
data_connector_debug: Product Import: PropertyAction/Blade-Project: needed
non-nil but found nil object id for 12365-567
data_connector_debug: Product Import: Repeating parse/actions phase to take
account of newly-created objects
data_connector_debug: Product Import: JsonParser::ParseValuesForActions
getting root ""
data_connector_debug: Product Import: JsonParser::ParseValuesForActions found
single object root ""
data_connector_debug: Product Import: JsonParser::ParseData evaluating actions
using input values: id:12365-567, project:Broadsword, owner:Andy
data_connector_debug: Product Import: ObjectCreationAction/Blade Creation:
needed nil but found non-nil object id for 12365-567
data_connector_debug: Product Import: PropertyAction/Blade-Owner: queueing
request: 12365-567 owner = Andy
data_connector_debug: Product Import: PropertyAction/Blade-Project: queueing
request: 12365-567 project = Broadsword

In this case we are tracing a listener stream for JSON data and what is happening is described
below:

1. The stream 'Product Import' prints out the data it has received verbatim.

2. The parser will tell us whether it locates the root object. (Because this is JSON we use a
JsonParser but this should be similar for other data formats.)

3. If the root object is located, then the parser will tell us the data that it is using to evaluate
actions.

4. Here we have three actions: 'Blade Creation', which is a ObjectCreationAction; Blade-
Owner, which is a PropertyAction; Blade-Project, which is a PropertyAction. Each action will

48

Trace Messages

print data that includes its type/name at the start and provides s simple commentary on
what it does. In this case:

a. Blade Creation finds the ID value 12365-567 and discovers that this value isn't already
created and queues a request to create it.

b. Blade-Owner finds the same ID value but is unable to set a property for it because it
hasn't yet been created (it was just queued for creation).

c. Blade-Project does the same.

d. The actions are then performed (just the single creation action this time).

e. In this case, because an object has just been created, the actions are done again to
see if any more of them can now be achieved.

f. Now Blade-Owner finds the ID value which has been created and queues a request to
set the property.

g. Blade-Project does the same.

h. The actions are then performed (two property set actions this time).

5. The final state has three changes to the data: an object called '12365-567' created, its
'owner' property set to "Andy"; and its 'project' property set to "Broadsword".

49

Ensuring EDC HTTP Listener Streams are Implemented Securely

Ensuring EDC HTTP Listener Streams are
Implemented Securely
The External data connector includes an HTTP listener option, which allows remote systems to
push data to SmartSpace. It is important to understand the security implications of this feature,
because the External data connector by itself is not intended to provide secure authentication or
access control features. Therefore in a production system some extra steps are required to secure
the interface:

1. Best practice – use a reverse proxy: The listener should bind to a loopback port and
accept connections from a reverse proxy such as Apache, IIS or NGINX, which will be
responsible for all user authentication and control, and will only forward requests that
satisfy its security requirements

2. Weaker alternative – use network access controls: The listener should bind to an
accessible network port, and firewall rules should restrict connection to the relevant
external system(s) only. This ensures that the service is not just open to arbitrary users, but
doesn't provide the full set of security features that (1) does.

3. Weak security – no protection: The listener binds to an accessible network port without
access restrictions. In principle on a public network this approach may open the EDC
listener to arbitrary remote connectors, which would be able to change application data via
the EDC. Hence this should only be used for internal experimentation, demoware and
similar applications.

50

Identity language

Identity language
To help with parsing of complex, nested data structures, the service uses a language, mirroring C#
syntax, to help define the significance of data members in stream data. An identity is a name or
sequence of names describing the full path to a data field in data messages. Identities are read
from left to right, with the leftmost data field name being a top-level data field name and depth
increasing as you move right. An empty identity represents the root element. The specific syntax
of identities is specific to the format of the data.

JSON
Identities are made up of sequences of JSON object keys, starting with a key in the top level
object. A ‘.’ is used to denote a nested object and ‘[x]’ is used to denote a fixed index in an array
where x is the index, starting from 0. For example, the root of the locations in the JSON below is
“Locations” and the y coordinate of tag1 is “Locations[0].Coords[1]”.

{
"Irrelevant": "some_data",
"Locations": [
{

"name": "tag1",
"Coords": [

1,
2,
3

]
},
{

"name": "tag2",
"Coords": [

1,
2,
3

]
}],
"More irrelevant": "some_data"

}

The '$' wildcard can be used as the index number to signify the last element in an array.

XML
Identities start with an element tag in the root element, each nested element or attribute is
denoted with a ‘.’. Attributes can only be the rightmost element.

51

Identity language

In the same way as described for JSON, above,‘[x]’ can be used to denote a fixed index in an array
where x is the index, starting from 0.

CSV
There is no nesting of data in CSVs. Identities are either empty, for the “root element”, or the
name of a column heading. Column headings are optional, and in the case of CSV without
column headings, identities should take the form '[x]' where x is the column index, starting from
0.

Single-field data
There is no nesting of data in single-field data. Identities should either be empty, for the “root
element”, or ‘field’, for the single field.

52

Tag namespaces

Tag namespaces
Tag namespaces are used by the External data connector to support non-Ubisense tags for
ObjectTagActions. Currently only EPC tag IDs up to 128 bits in length are supported.

Tag namespaces can be specified by adding the appropriate prefix to the start of a tag id followed
by “::”, e.g. EPC-64::1234567890abcdef. Namespaces can be used as tag IDs in SmartSpace, in tag
association or for tag parameters for External data connector service parameters. The tag
namespace parameter can be used to automatically prepend the prefix to parsed tag IDs in
external data (do not include the “::” in the parameter value).

Some actions or functionality may not be supported for non-Ubisense tags, e.g. battery and
activity data.

Supported Namespace Prefixes
l EPC-64

l EPC-96

l EPC-128

53

Supported protocols

Supported protocols
The following outlines the protocols and formats supported by the External data connector
service.

Protocols

HTTP(S) connector

The EDC supports connection to external systems via both HTTP and HTTPS with basic
authentication. Custom request headers are also supported. Data provided by the external
system should be in a valid text format.

HTTP(S) receiver

The EDC supports running as an HTTP(S) server, receiving data messages via HTTP or HTTPS
requests. Optionally supports use of basic authentication of incoming requests. Data sent to the
service should be in a valid text format.

Web socket connector

The EDC can retrieve data from external systems via a web socket client, optionally supporting
basic authentication. The client will connect, optionally send a configurable initialization message
then wait for the server to send response(s). After a configurable period of no server
communication, the client will close and attempt to reconnect again, sending the initialization
message on reconnect. A compatible server should periodically send the required data to
connected clients (optionally after an initialization message), or it should send the required
information once to a connected client and rely on the timeout/reconnect functionality to send
more data when the EDC reconnects.

TCP

The EDC supports running as a TCP client. The EDC will connect to a TCP server and listen for data
messages in a valid text format. The EDC does not perform any connection management, such as
sending keepalives, but will attempt to reconnect if disconnected. Received messages should
have a termination point which can be determined by a regular expression, e.g. a newline signifies
a complete message.

54

Supported protocols

SQL

The EDC supports retrieval of table rows from a SQL server using conventional connection and
query strings. Retrieved data will converted to CSV format; SQL Connector Streams should have
their format parameter set to CSV.

File

The EDC can retrieve data directly from a text file.

Formats
Currently, the service only supports tag/object data. This may be location, property or
battery/activity data. Formats will be described in terms of the following definitions:

l Field – A datum in a data message, identifiable by an identity e.g. object id, a location
coordinate or a field containing other, child fields.

l Action object – A collection of data fields, grouped together logically in a data message.
Together, these fields contain all information required by an action to operate for a single
tag/object.

l Root field – For nested source data formats. The innermost field containing all action object
(s) in a data message.

Text formats

For sources where the data retrieved is a string.

JSON

JSON string data should be a valid JSON object or array of objects. The action object(s) should be
JSON object(s), either as a single JSON object or as an array. All relevant fields (and all ancestors of
that field) must be a named JSON value or a value in an array at a fixed index.

Fields – All relevant fields must be a named JSON value or a value in an array at a fixed index.

Action objects – All fields for a single object/tag should be within a JSON object, either at the top
level of this object or nested with objects or arrays at a fixed index.

Root field – Action objects can be defined as a JSON object/array at the top level or within a
nested field.The root should be a JSON object whose value is an object or array of objects.

Valid examples

55

Supported protocols

{
"name":"object1",
"location":[

12.3,
43.7,
0.0

],
"irrelevant_data":80946

}

{
"system_name":"external source 1",
"status":"good",
"location_data":{

"location_count":2,
"locations":[

{
"name":"object1",
"x":3.2,
"y":4.6,
"z":1.0

},
{

"name":"object2",
"x":2.6,
"y":15.7,
"z":0.8

}
]

}
}

XML

XML data should be a valid XML string. The action object(s) should be an element with one or
more child elements (possibly nested) or attributes. Field values can be the contents of the
elements or attribute values (of the parent element of child elements).

Fields – Relevant fields can be child elements with contents or attributes of the parent or child
elements.

Action objects – Fields for a single object/tag should be contained in a single element. When
there are multiple action objects in a single data message, they should be sibling elements with
the same name.

Root field – Action objects can be in XML elements at any level in the tree.

Valid examples

56

Supported protocols

<?xml version="1.0"?>
<ArrayOfLocationObject xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<LocationObject>
<name>TestObject1</name>
<x>4.4679310077186347</x>
<y>7.6369389699012684</y>
<z>0</z>

</LocationObject>
<LocationObject>

<name>TestObject2</name>
<x>6.4845871801881989</x>
<y>7.4083634868303143</y>
<z>0</z>

</LocationObject>
</ArrayOfLocationObject>

CSV

CSV data must start with a row of column headings.

CSV data can optionally start with a row of column headings.

Fields – A column in a single row.

Actions Objects – Each row is treated as an action object.

Root field – CSV data is not nested.

Valid examples

l With column headings

id,x,y,z
TestObject1,4.4679,7.6369,0.0
TestObject2,6.4856,7.4084,0.0

l Without column headings

Tag1,data
Tag2,other_data

evaluates to the following id:value pairs:

[0]:Tag1, [1]:data
[0]:Tag2, [1]:other_data

Single-field data

Single-field data should be a single line of data, representing a single data field.

57

Supported protocols

Fields – A single line string.

Action Objects – Single-field data should only have a single action object, each row (and
therefore each complete single-field data message) is treated as an action object.

Root field – Single-field data is not nested.

Valid examples

StorageArea1

58

Example: Connecting a Quuppa tracking system to SmartSpace

Example: Connecting a Quuppa tracking system
to SmartSpace
This section gives and example of configuring the External data connector to take location
information from a Quuppa Positioning Engine and inject it into SmartSpace.

Overview
Quuppa provide data through a Web Service API in JSON.

The EDC points directly to the JSON data stream using the web address of the Quuppa
Positioning Engine (QPE) plus some additional parameters in the web address link. This is
configured in a SmartSpaceEDC Stream Object (described in Creating the Stream Object).

In addition to the parameters for the stream object, an action object and its parameters are
required (described in Creating the Action Object) to process the location information.

Quuppa Positioning Engine APIs

The Quuppa Positioning Engine APIs document can be downloaded from Quuppa Customer Portal
on the Quuppa website.

Connecting the SmartSpace EDC to Quuppa using the
getTagPosition method
Note: This example is based on version 2.0 of the Quuppa Positioning Engine API.

Creating the Stream Object

We need to create a SmartSpace EDC Stream Object that will point to the QPE and regularly
request data from it.

1. In SmartSpace Config, in the TYPES / OBJECTS task, we create an HTTP Request Stream
object called "Quuppa_TagPosition".

We drag out the HTTP Request Stream type from the type hierarchy (it's under Stream >
Text Stream > Text Connector Stream), double-click <Create new object> and enter
Quuppa_TagPosition (or whatever name is required) for the object's name.

59

https://www.quuppa.com/

Example: Connecting a Quuppa tracking system to SmartSpace

Click Save.

2. We need to configure this "Quuppa_TagPosition" stream to point to the QPE by defining
the HTTP request with some parameters.

In SmartSpace Config, in the SERVICE PARAMETERS task, choose External data connector
from the dropdown, drag out the HTTP Request Stream type from the type hierarchy (it's
under Stream > Text Stream > Text Connector Stream), and double-click Quuppa_
TagPosition. Click Edit.

In this case, set the arbitration time to "0" as the asset objects are driven only by the
Quuppa tag, so there is no arbitration to do between two or more tracking systems driving
each object (e.g. Quuppa indoors and GPS outdoors).

We set the “query interval” to "1". The value we here depends on the use case, for example
if the Quuppa tags were configured with an update rate of 30 seconds, there would be no
need for a query interval of 1 sec, but the value would be around 10 seconds (the default).

The URL link in this example is:
http://192.168.28.139:8080/qpe/getTagPosition?version=2&maxAge=5000

where :

l 192.168.28.139 is the IP of the QPE server

l 8080 the port used by Quuppa for the request (it can be different according to the
configuration of the Quuppa API on their side)

l getTagPosition the method used to request Quuppa tag position data

l version=2 is a mandatory parameter and is the version of the QPE API

60

http://192.168.28.139:8080/qpe/getTagPosition?version=2&maxAge=30000

Example: Connecting a Quuppa tracking system to SmartSpace

l maxAge=XXXX is an optional parameter. It defines the maximum age in milliseconds
for the information. For example, by defining '&maxAge=1000', no results are
returned if the last tag position update is older than 1 second.

In our example, no data older than 5 seconds is returned.

Other parameters for the Quuppa URL are available and are described in the Quuppa
Positioning Engine APIs document.

We set the other parameters as shown below:

Click Save.

Creating the Action Object

We are now able to request Quuppa tag information every "query interval" seconds, here every 1
second, but we have not defined what to do with the data. So, we need to process this stream and
feed the right objects into SmartSpace by creating a SmartSpace Action object.

1. In SmartSpace Config, in the TYPES / OBJECTS task, we create a Cartesian Location Action
object called "Quuppa_LocationAction".

2. We drag out the Cartesian Location Action type from the type hierarchy (it's under Action >
Object Action > Object Tag action > Location Action), double-click <Create new object>
and enter Quuppa_LocationAction (or whatever name is required) for the object's name.

61

Example: Connecting a Quuppa tracking system to SmartSpace

Click Save.

3. We need to configure this “Quuppa_LocationAction” action to drive our SmartSpace assets.
Below we describe two methods to do this:

l Method A: the Quuppa action will point directly to the tag associated with the asset
object (similar to the DIMENSION4 location platform when it drives the tag
associated with an asset object with the association being made in the using the TAG
ASSOCIATION task in SmartSpace Config)

l Method B: the Quuppa action will point to a property of the asset (which must have a
unique name)

Method A

In SmartSpace Config, in the SERVICE PARAMETERS task, choose External data connector from
the dropdown, drag out the Cartesian Location Action type from the type hierarchy (it's under
Action > Object Action > Object Tag action > Location Action), and double-click Quuppa_
LocationAction. Click Edit.

Configure the parameters as shown below.

62

https://docs.ubisense.com/smartspaceubisense/Content/UserResources/RTLSIntegration/ExternalDataConnector/external-data-connector-configuration.htm#ParametersforStreamObjects?Highlight=edc

Example: Connecting a Quuppa tracking system to SmartSpace

Click Save.

The parameters shown boxed in red in the example above refer to the content of the
Quuppa JSON data. An example of Quuppa JSON that can be received via an HTTP request is
shown below with the corresponding parameters identified.

Parameters in the blue boxes relate to SmartSpace's handling of the received data.

63

Example: Connecting a Quuppa tracking system to SmartSpace

{
"code": 0,
"command":

"http://localhost:8080/qpe/getTagPosition?version=2&humanReadable=true&maxAge=5000.htm
l",

"message": "TagPosition",
"responseTS": 1520946349517,
"status": "Ok",

"tags": [
{ "tags" is the "data root" parameter

"areaId": "Tracking001_2D",
"areaName": "SAM146",
"color": "#FF0000",
"coordinateSystemId": "CoordSys001",
"coordinateSystemName": "SAM146",
"covarianceMatrix": [

1.82,
0.09,
0.09,
0.87

],

"id": "0cb2b725c5f0",
"name": "BAT35_SAM146_0135", "id" is the "id identity"
"position": [

15.2,
7.45,
1.2

],
"positionAccuracy": 0.41,
"positionTS": 1520928431109,

"smoothedPosition": [
15.2,
7.45,
1.2

],

The "smoothedPosition" co-ordinates correspond
to the "x identity", "y identity" and "z identity"
parameters

64

Example: Connecting a Quuppa tracking system to SmartSpace

"smoothedPositionAccuracy": 0.44,
"zones": []

},
{

"areaId": "Tracking001_2D",
"areaName": "SAM146",
"color": "#FF0000",
"coordinateSystemId": "CoordSys001",
"coordinateSystemName": "SAM146",
"covarianceMatrix": [

1.29,
-0.1,
-0.1,
0.96

],
"id": "0cb2b72478a7",
"name": "BAT35_SAM146_0059",
"position": [

16.1,
7.45,
1.2

],
"positionAccuracy": 0.34,
"positionTS": 1520930414097,
"smoothedPosition": [

13.86,
4.9,
1.2

],
"smoothedPositionAccuracy": 0.34,
"zones": []

},
{

"areaId": "Tracking002_2D",
"areaName": "MagasinKME",
"color": "#FF0000",
"coordinateSystemId": "CoordSys002",
"coordinateSystemName": "MagasinKME",
"covarianceMatrix": [

0.91,
-0.01,
-0.01,
0.74

],
"version": "2.1"

}

With the parameters defined, we need to make the association between Quuppa tags and
SmartSpace objects, using a tag ID format with 16 hexadecimal digits. In SmartSpace Config,
Open the TAG ASSOCIATION task and double-click <Associate tag with object> to enter details
of the association.

Below is an example of the tag associations:

65

Example: Connecting a Quuppa tracking system to SmartSpace

Method B

In this method, the Quuppa action will point to a property of the asset (not to its associated tag,
as done in Method A).

1. After we have defined the Stream and its parameter, we need to create a “Quuppa Tag Id”
property for your asset object whose value is unique. In SmartSpace Config, we use the
TYPES / OBJECTS task to add a “Quuppa Tag Id” property for each object type that is
tracked by a Quuppa tag. Then for each instance of the tracked object we must assign a
Quuppa tag ID, using the format used in the JSON file.

2. In SmartSpace Config, we use the SERVICE PARAMETERS task to configure the parameters
for the "Quuppa_LocationAction". For this method, we need to set the following
parameters:

l “object type” which should be the name of the SmartSpace object type tracked by
Quuppa

l “id property” which should be the name of the unique property we created for the
tracked object which is set to the "Quuppa Tag Id".

3. We must then ensure SmartSpace asset objects tracked by Quuppa have a tag associated
with them, either manually (with a dummy tag) or using the Association Action.

Connecting the SmartSpace EDC to Quuppa using the getTagData
method
Note: This example is based on version 2.2 of the Quuppa Positioning Engine API.

66

Example: Connecting a Quuppa tracking system to SmartSpace

Creating the Stream Object

We need to create a SmartSpace EDC Stream Object that will point to the QPE and regularly
request data from it.

1. In SmartSpace Config, in the TYPES / OBJECTS task, we create an HTTP Request Stream
object called "Quuppa_Stream".

We drag out the HTTP Request Stream type from the type hierarchy (it's under Stream >
Text Stream > Text Connector Stream), double-click <Create new object> and enter
Quuppa_Stream (or whatever name is required) for the object's name.

Click Save.

2. We need to configure "Quuppa_Stream" to point to the QPE by defining the HTTP request
with some parameters.

In SmartSpace Config, in the SERVICE PARAMETERS task, choose External data connector
from the dropdown, drag out the HTTP Request Stream type from the type hierarchy (it's
under Stream > Text Stream > Text Connector Stream), and double-click Quuppa_Stream.
Click Edit.

In this case, set the arbitration time to "0" as the asset objects are driven only by the
Quuppa tag, so there is no arbitration to do between two or more tracking systems driving
each object (e.g. Quuppa indoors and GPS outdoors).

We set the “query interval” to "1". The value we here depends on the use case, for example
if the Quuppa tags were configured with an update rate of 30 seconds, there would be no
need for a query interval of 1 sec, but the value would be around 10 seconds (the default).

The URL link in this example is: http://192.168.28.139:8080/qpe/getTagData&maxAge=5000

67

http://192.168.28.139:8080/qpe/getTagPosition?version=2&maxAge=30000

Example: Connecting a Quuppa tracking system to SmartSpace

where :

l 192.168.28.139 is the IP of the QPE server

l 8080 the port used by Quuppa for the request (it can be different according to the
configuration of the Quuppa API on their side)

l getTagData the method used to request Quuppa tag position data

l maxAge=XXXX is an optional parameter. It defines the maximum age in milliseconds
for the information. For example, by defining '&maxAge=1000', no results are
returned if the last tag position update is older than 1 second.

In our example, no data older than 5 seconds is returned.

Other parameters for the Quuppa URL are available and are described in the Quuppa
Positioning Engine APIs document.

We set the other parameters as shown below:

Click Save.

Creating the Action Object

We are now able to request Quuppa tag information every "query interval" seconds, here every 1
second, but we have not defined what to do with the data. So, we need to process this stream
and feed the right objects into SmartSpace by creating a SmartSpace Action object.

68

Example: Connecting a Quuppa tracking system to SmartSpace

1. In SmartSpace Config, in the TYPES / OBJECTS task, we create a Cartesian Location Action
object called "Quuppa_LocationAction".

2. We drag out the Cartesian Location Action type from the type hierarchy (it's under Action >
Object Action > Object Tag action > Location Action), double-click <Create new object>
and enter Quuppa_LocationAction (or whatever name is required) for the object's name.

Click Save.

3. We need to configure this “Quuppa_LocationAction” action to drive our SmartSpace assets.
Below we describe two methods to do this:

l Method A: the Quuppa action will point directly to the tag associated with the asset
object (similar to the DIMENSION4 location platform when it drives the tag
associated with an asset object with the association being made in the using the TAG
ASSOCIATION task in SmartSpace Config)

l Method B: the Quuppa action will point to a property of the asset (which must have a
unique name)

Method A

In SmartSpace Config, in the SERVICE PARAMETERS task, choose External data connector from the
dropdown, drag out the Cartesian Location Action type from the type hierarchy (it's under Action
> Object Action > Object Tag action > Location Action), and double-click Quuppa_
LocationAction. Click Edit.

Configure the parameters as shown below.

69

https://docs.ubisense.com/smartspaceubisense/Content/UserResources/RTLSIntegration/ExternalDataConnector/external-data-connector-configuration.htm#ParametersforStreamObjects?Highlight=edc

Example: Connecting a Quuppa tracking system to SmartSpace

Click Save.

The parameters shown boxed in red in the example above refer to the content of the
Quuppa JSON data. An example of Quuppa JSON that can be received via an HTTP request is
shown below with the corresponding parameters identified.

Parameters in the blue boxes relate to SmartSpace's handling of the received data.

70

Example: Connecting a Quuppa tracking system to SmartSpace

{
"code":"0",
"status":"Ok",
"command":http://192.168.28.139:8080/qpe/getTagData&maxAge=5000,
"message":"Tag data",
"responseTS":1657007507616,
"version":"1.0",
"formatId":"defaultLocationAndInfo",
"formatName":"defaultLocationAndInfo",

"tags":[
{

"tags" is the "data root"
parameter

"tagId":"ca0a00025004",
"tagName":null, "tagId" is the "id identity"
"lastPacketTS":1657007497625,
"color":"#FF0000",
"tagGroupName":null,
"locationType":"position",
"locationMovementStatus":"stationary",
"locationRadius":0.14,

"location":[
63.07,
7.24,
1.00

],

The "location" co-ordinates
correspond to the "x identity",
"y identity" and "z identity"
parameters

71

Example: Connecting a Quuppa tracking system to SmartSpace

"locationTS":1657007497625,
"locationCoordSysId":"9e5a0d6c-c006-42fe-97a1-

641615ca7d05",
"locationCoordSysName":"ecf86399-f850-093a-7410-

aebb6d3b4c16",
"locationZoneIds":[

"413d6c5b-a486-4ea5-b078-ef086d0594e5"
],
"locationZoneNames":[

"RED"
],
"button1State":"notPushed",
"button1StateTS":1657007477601,
"button1LastPressTS":null,
"batteryAlarm":"ok",
"batteryAlarmTS":1657007477601,
"rssi":35,
"rssiLocatorCount":2

},
{

"tagId":"ca2000006062",
"tagName":null,
"lastPacketTS":1657007506392,
"color":"#FF0000",
"tagGroupName":null,
"locationType":"presence",
"locationMovementStatus":"stationary",
"locationRadius":null,
"location":null,
"locationTS":1657007506392,
"locationCoordSysId":"9e5a0d6c-c006-42fe-97a1-

641615ca7d05",
"locationCoordSysName":"ecf86399-f850-093a-7410-

aebb6d3b4c16",
"locationZoneIds":null,
"locationZoneNames":null,
"button1State":"notPushed",
"button1StateTS":1657007506392,
"button1LastPressTS":null,
"batteryAlarm":"ok",
"batteryAlarmTS":1657007506392,
"rssi":28,
"rssiLocatorCount":1

},
]

}

With the parameters defined, we need to make the association between Quuppa tags and
SmartSpace objects, using a tag ID format with 16 hexadecimal digits. In SmartSpace Config,
Open the TAG ASSOCIATION task and double-click <Associate tag with object> to enter details
of the association.

Below is an example of the tag associations:

72

Example: Connecting a Quuppa tracking system to SmartSpace

Method B

In this method, the Quuppa action will point to a property of the asset (not to its associated tag, as
done in Method A).

1. After we have defined the Stream and its parameter, we need to create a “Quuppa Tag Id”
property for your asset object whose value is unique. In SmartSpace Config, we use the
TYPES / OBJECTS task to add a “Quuppa Tag Id” property for each object type that is
tracked by a Quuppa tag. Then for each instance of the tracked object we must assign a
Quuppa tag ID, using the format used in the JSON file.

2. In SmartSpace Config, we use the SERVICE PARAMETERS task to configure the parameters
for the "Quuppa_LocationAction". For this method, we need to set the following
parameters:

l “object type” which should be the name of the SmartSpace object type tracked by
Quuppa

l “id property” which should be the name of the unique property we created for the
tracked object which is set to the "Quuppa Tag Id".

3. We must then ensure SmartSpace asset objects tracked by Quuppa have a tag associated
with them, either manually (with a dummy tag) or using the Association Action.

73

	Overview of the External data connector
	Anatomy of the service
	Overview
	Glossary
	Configuration workflow

	Requirements
	SmartSpace
	Microsoft .NET Core
	External Systems
	JSON
	XML
	CSV
	Single-field Data

	Installing the External data connector
	Configuring the External data connector
	Creating the stream object
	Creating Action Objects
	Parameters for Stream Objects
	Parameters for Actions
	Starting Stream Services
	Updating the configuration

	Configuring Location Action Zones

	Types and parameters
	Types
	Stream Types
	Action Types
	Zones

	Parameters
	Stream Parameters
	Action Parameters
	Miscellaneous Parameters

	Types and parameters tree view
	Streams
	Actions
	Miscellaneous Parameters

	Trace Messages
	Understanding reports
	data_connector stream
	data_connector_debug stream

	Ensuring EDC HTTP Listener Streams are Implemented Securely
	Identity language
	JSON
	XML
	CSV
	Single-field data

	Tag namespaces
	Supported Namespace Prefixes

	Supported protocols
	Protocols
	HTTP(S) connector
	HTTP(S) receiver
	Web socket connector
	TCP
	SQL
	File

	Formats
	Text formats
	JSON
	XML
	CSV
	Single-field data

	Example: Connecting a Quuppa tracking system to SmartSpace
	Overview
	Connecting the SmartSpace EDC to Quuppa using the getTagPosition method
	Creating the Stream Object
	Creating the Action Object

	Connecting the SmartSpace EDC to Quuppa using the getTagData method
	Creating the Stream Object
	Creating the Action Object

