
SmartSpace
External Data Connector
For version 3.5

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: http://www.ubisense.net.

http://www.ubisense.net/

Copyright © 2020, Ubisense Limited 2014 - 2020. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from
Ubisense at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.net

All contents of this document are subject to change without notice and do not
represent a commitment on the part of Ubisense. Reasonable effort is made to ensure
the accuracy of the information contained in the document. However, due to on-going
product improvements and revisions, Ubisense and its subsidiaries do not warrant the
accuracy of this information and cannot accept responsibility for errors or omissions
that may be contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.net/

Page i

Contents

Overview of the External data connector 1

Configuration workflow 1

Requirements 3

SmartSpace 3

.NET Core 3

External Systems 3

JSON 3

XML 3

CSV 3

Installing the External data connector 4

Configuring the External data connector 5

Creating Stream Objects 5

Creating Action Objects 5

Parameters for Stream Objects 6

Parameters for Actions 7

Starting Stream Services 8

Updating the configuration 9

Configuring Location Action Zones 9

Types and parameters 11

Types 11

Stream Types 11

Action Types 12

Zones 13

Parameters 14

Stream Parameters 15

Action Parameters 18

Miscellaneous Parameters 21

Types and properties tree view 22

Page ii

Streams 22

Actions 23

Miscellaneous Properties 25

Trace Messages 26

Understanding reports 26

Identity language 28

JSON 28

XML 28

CSV 29

Supported protocols 30

Protocols 30

HTTP(S) connector 30

HTTP(S) receiver 30

Web socket connector 30

Formats 30

Text formats 31

JSON 31

XML 32

CSV 33

Tag namespaces 34

Supported Namespace Prefixes 34

Overview of the External data connector

Overview of the External data connector
The External data connector is a service for collecting location and/or property data from an
external system and injecting it into SmartSpace. It supports a range of protocols for connecting
to external customer systems, including HTTP(S) queries (server and client) and web sockets
(client), and allows imports in various formats, including XML, JSON and CSV.

Configuration is carried out entirely within the SmartSpace Config application and this guide
takes you through the configuration process step by step.

The External data connector requires the creation of two kinds of objects:

l streams that configure the connection and data retrieval for external systems. One stream
object is required for each external system connection

l actions that operate on streams to parse and inject data into SmartSpace. A stream can
have one or more action object defined for it

Streams and actions are created based on Ubisense-supplied types in the TYPES / OBJECTS task
in SmartSpace Config. You are only required to give these objects names: they have no other
properties. Instead, their behavior is configured in the SERVICE PARAMETERS tab where they
have service parameters specific to their functionality. It is in the SERVICE PARAMETERS tab that
you link one or more actions to a stream.

When you are ready to deploy a stream, you set its enabled parameter to true in the SERVICE
PARAMETERS tab. This creates a service to manage that stream and its actions. The service is
deployed, but you need to start it manually using the Ubisense Service Manager application.

Configuration workflow
Configuration is performed in SmartSpace Config and Ubisense Service Manager. The
configuration process involves creating objects for stream and action types and setting service
parameters for them as follows:

1. Create stream object(s).

2. Create action object(s).

3. Configure stream object parameters.

4. Configure action parameters.

5. Start stream services.

1

Overview of the External data connector

These steps are described in the sections that follow, using an example that involves setting up
a service to retrieve locations from an HTTP URL.

2

Requirements

Requirements

SmartSpace
The External data connector requires a license for RTLS integration version 3.5 or higher.

.NET Core
The External data connector requires Microsoft .NET Core 2.2. For Linux servers, you may need to
install .NET Core: follow the instructions for Linux at https://dotnet.microsoft.com/).

External Systems
External systems must use a supported format and protocol. Format specific requirements are
outlined below.

General format:

l Timestamps can be in an ISO 8601 compliant format or a Unix epoch time

l Where the format supports it, values of null will be parsed but ignored by the service

JSON

All relevant JSON data values must be within named JSON objects or at fixed array indices. If the
data is nested the same must be true for all parent objects of those data values.

XML

Valid XML where data values can be either attributes or elements.

CSV

CSV data should consist of two or more rows separated by line breaks. The first row must start
with a line/row of column headings. Columns are separated by commas by default but other
character(s) can be configured.

3

Installing the External data connector

Installing the External data connector
To install the External data connector feature:

l Make sure that the SmartSpace platform includes a license for RTLS integration version
3.5 or higher.

l Install the External data connector feature using Ubisense Service Manager.

For further information on installing SmartSpace features see SmartSpace Installation on the
SmartSpace website at http://www.ubisensesmartspace.com/.

4

Configuring the External data connector

Configuring the External data connector
The following sections take you through configuring a stream object, ExampleHttpRequester
stream, and the single action associated with it. You will then see how to define the parameters
for these types and how to deploy the service.

Creating Stream Objects
You create stream objects based on the Ubisense-supplied types in the TYPES / OBJECTS tab of
SmartSpace Config. Each external system connection requires its own stream object.

To create a stream object:

1. In SmartSpace Config, choose the TYPES / OBJECTS task.

2. Drag the HTTP Request Stream type into the object browser and double-
click <Create new object>.

3. In the dialog, enter the object’s name, here ExampleHttpRequester, and click Save.

Creating Action Objects
You create actions in the same way you create stream objects.

To create an action object:

1. In SmartSpace Config, choose the TYPES / OBJECTS task.

2. Drag the Cartesian Location Action type into the object browser and double-

5

Configuring the External data connector

click <Create new object>.

3. In the dialog enter the object’s name, here ExampleLocationAction, and click Save.

Parameters for Stream Objects
To configure service parameters for a stream object:

1. In SmartSpace Config, choose the SERVICE PARAMETERS task.

2. Choose the External data connector configuration, and then find Http Request Stream in
the list of objects. (Use the Expand All button to display the object hierarchy, if
necessary.)

3. Drag the Http Request Stream stream into the object browser to display the available
objects, double-click ExampleHttpRequester and click Edit to edit its parameters.

6

Configuring the External data connector

The parameters offered depend on the kind of stream you have created. The complete
list of stream parameters for all stream types is given in Stream Parameters.

In our example, we have set the URI, format and enabled the stream, leaving the other
parameters with their default values.

4. Click Save.

Note: Stream services do not react to changes to stateful configuration parameters, for example
changes of address for TCP streams. We recommend that you always restart a stream service in
Ubisense Service Manager after changing its parameters. See Starting Stream Services.

Parameters for Actions
You can create one or more actions to associate with a stream. Each action can have different
parameters.

To configure service parameters for an action:

1. In SmartSpace Config, choose the SERVICE PARAMETERS task.

2. Choose the External data connector configuration, and then find LocationAction in the
list of objects. (Use the Expand All button to display the object hierarchy, if necessary.)

7

Configuring the External data connector

3. Drag the LocationAction into the object browser to display the available objects,
double-click ExampleLocationAction and click Edit to edit its parameters.

The parameters offered depend on the kind of action you have created. The complete
list of action parameters for all types of action is given in Action Parameters.

In our example, we have configured the identities of fields that should be present in the
data: x, y, z and name fields. Because this data is object data (not tag data), we have also
asserted the object type, InjectionObject. Lastly, we set what stream this action should
operate on, the ExampleHttpRequester stream we created earlier.

4. Click Save

Starting Stream Services
When a stream is enabled (by setting the enabled parameter to true, described above), a
service named after the stream object is created to manage that stream and its actions. This
service is deployed but not started: you must start it manually after configuration is complete.

To start the service for a stream:

8

Configuring the External data connector

1. In Ubisense Service Manager, open the MANAGE SERVICES tab.

2. Navigate to the service by opening folders in the SERVICES pane to locate it. Open All > Ubisense autogenerated service > RTLS integration
and any enabled services are listed, identified by the name given to the stream objects.

3. Select the service and click Start.

In our example, we start the Ubisense autogenerated service::RTLS integration::ExampleHttpRequester
service.

Updating the configuration

Stream services do not react to changes to stateful configuration parameters, for example
changes of address for TCP streams. We recommend that you always restart a stream service
after changing its parameters (by locating it, as described above, and clicking Restart).

Changes to actions should not require a service restart.

Configuring Location Action Zones
Inclusion/exclusion zones can be used with location actions to control what locations are
injected. After creating a Location Action Zone object in the Types and objects workspace, the
inclusion/exclusion shapes can be configured in the Spatial properties workspace. Locations
inside an exclusion shape will be ignored. When an inclusion shape is defined, locations outside
the shape will be ignored. A zone can have both an exclusion shape and inclusion shape with
exclusion shapes superseding inclusion shapes.

9

Configuring the External data connector

Zones should be stationary shapes. A stream can use one zone at a time.

10

Types and parameters

Types and parameters
This section lists the types available for use with the External data connector and the parameters
to configure them. The lists include the parent types on which the Ubisense types for the
different connection types are based. These are shown for information only: you should base
your streams and actions on the Ubisense types derived from them.

Types

Stream Types

Type Purpose

Stream Abstract base type for streams

Text Stream Abstract base class for text based streams

Text Listener Stream Abstract base class for text listener streams

HTTP Listener Stream Listens for POST/PUT HTTP(S) requests

Text Connector Stream Abstract base class for text connector stream

HTTP Request Stream Retrieves data via periodic HTTP(S) GET requests

Websocket Connector Stream Connects to a server via websockets and listens for data

11

Types and parameters

Action Types

Type Purpose

Action Abstract base type for all actions

Object
Action

Abstract base class for actions on object data

Object Tag
Action

Abstract base class for actions on object/tag data

Location
Action

Abstract base class for actions on object/tag location data

Cartesian
Location
Action

Injects object/tag locations from Cartesian (x/y/z) data

GPS
Location
Action

Injects object/tag locations from GPS data

Fixed
Location
Action

Injects object/tag locations at a fixed position

Tag Battery
Action

Asserts tag battery status from parsed data

Property
Action

Sets UDM property values for objects based on parsed data

Association
Action

Associates unassociated parsed objects with free tags from a given range

Object
Creation
Action

Creates missing SmartSpace objects to match objects from parsed data. It is
recommended that you only have one Object Creation Action per External
system

12

Types and parameters

Zones

Type Purpose

Location Action Zone Used to define inclusion/exclusion extents for location actions

GPS Reference Point Used to configure GPS coordinate conversion

GPS Reference Points

At least two GPS reference points are needed to convert GPS locations to the Cartesian
coordinates used by the platform. These coordinates are defined by creating GPS Reference
Point objects in the Types and objects workspace and then setting their x, y, latitude and
longitude values in SERVICE PARAMETERS.

When more than two GPS reference points are defined, only the two points closest to a parsed
location are used in the conversion. This should allow the use of GPS reference points when
multiple areas that are not geographically adjacent are placed adjacent on the map, so long as
there are at least two reference points for each area.

13

Types and parameters

Parameters

14

Types and parameters

Stream Parameters

Parameter Type Purpose

max property
rate

Stream Maximum rate (Hz) at which properties will be set

report interval Stream Interval between monitor of the service in seconds

arbitration
time

Stream Arbitration time in seconds. When set to a positive value,
tag/object locations must be newer by this amount than the
most recent location seen by the platform for that tag/object,
else they will be ignored.

How arbitration time is used:

In the External data connector Arbitration time is used as
follows.

Where:

A is arbitration time

X is the time of a new location seen by the service for a tag T

Y is the last time the platform saw the tag T

The location will only be injected if

X >= Y + A

Significant values for arbitration time are:

l 0 (or any negative number) = arbitration disabled

l 0.1 (or any small, positive number) = avoid injecting repeated
locations

l 10 (some larger number) = give priority to another system, i.e. if
you are using both Ubisense tags and an external GPS system,
give Ubisense tags priority

association
range
mimimum

Stream For use with the association action. Mimimum tag id of the tag
pool available to the association action

15

Types and parameters

Parameter Type Purpose

association
range
maximum

Stream For use with the association action. Maximum tag id of the tag
pool available to the association action

format Text
Stream

Format of received data

csv delimiter Text
Stream

Delimiter used to separate values in CSV data. The service will
use the default for the current culture when unset

listening url HTTP
Listener
Stream

URL to listen for clients on

basic
authentication
username

HTTP
Listener
Stream

Username to use for basic authentication. Only requests using
basic authentication and matching this username will be
accepted

basic
authentication
password

HTTP
Listener
Stream

Password to use for basic authentication. Only requests using
basic authentication and matching this password will be
accepted

query interval Text
Connector
Stream

Interval between HTTP queries in seconds

server url Websocket
Connector
Stream

URL to connect to

initialisation
message path

Websocket
Connector
Stream

Stream Path to text file containing message(s) to send to the
server when the service connects. For use when the external
system requires an initialisation/subscription message before
receiving data

16

Types and parameters

Parameter Type Purpose

username Websocket
Connector
Stream

Basic authentication username to use with the websocket

password Websocket
Connector
Stream

Basic authentication password to use with the websocket

uri HTTP
Request
Stream

URI to query

basic auth
username

HTTP
Request
Stream

Basic authentication username to use with HTTPS

basic auth
password

HTTP
Request
Stream

Basic authentication password to use with HTTPS

additional
headers path

HTTP
Request
Stream

Path to a file containing one or more HTTP headers to include in
requests

17

Types and parameters

Action Parameters

Parameter Type Purpose

stream Action The stream to act on

id identity Object
Action

Identity of the id field (the tag id or object name) in source data

object type Object
Action

When set, the id is assumed to be an object name, otherwise id is
assumed to be a tag. The type to use, together with the id, to
determine which object from source data

filter
identity

Object
Action

Identity of the filter field in source data. When set, data for objects
not matching the filter value will be ignored

filter value Object
Action

Accepted value for the filter

data root Object
Action

Identity of the element containing the relevant data. For nested data,
e.g. complex JSON/XML.

tag id mask Object
Tag
Action

Bitmask to apply (as a bitwise OR) to parsed tag ids. Cannot be used
with tag id namespaces.

tag
namespace

Object
Tag
Action

The namespace to use for non-Ubisense tag ids. See tag namespace
section for details

time
identity

Location
Action

Identity of time values in source data. Current time is assumed when
this is not set

time
format

Location
Action

Custom format specifier for non-ISO 8601, non-unix timestamp
date/times. Details of suitable values can be found here
https://docs.microsoft.com/en-us/dotnet/standard/base-
types/custom-date-and-time-format-strings?view=netframework-4.8

18

https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/standard/base-types/custom-date-and-time-format-strings?view=netframework-4.8

Types and parameters

Parameter Type Purpose

use local
timezone

Location
Action

Whether parsed times are assumed to be local or UTC times

zone Location
Action

Inclusion/exclusion zones to use

transform
offset x

Location
Action

Offset to add to the x coordinate of parsed locations (after applying
transform rotation)

transform
offset y

Location
Action

Offset to add to the y coordinate of parsed locations

transform
offset z

Location
Action

Offset to add to the z coordinate of parsed locations

transform
yaw

Location
Action

Yaw rotation in degrees to apply to parsed locations

transform
pitch

Location
Action

Pitch rotation in degrees to apply to parsed locations

transform
roll

Location
Action

Roll rotation in degrees to apply to parsed locations

transform
left handed

Location
Action

Set to true when the source system uses a left handed coordinate
system, i.e. the y coordinate needs to be negated to match the
Ubisense coordinate system

activity
timeout

Location
Action

Interval, in seconds, without the action seeing an object/tag before
its activity is set to inactive. The tag must be in the monitored range.
When this parameter is not manually set (or is set to a value <= 0
with 0 being the default), the location action will not set the tag’s
activity to active.

19

Types and parameters

Parameter Type Purpose

activity tag
range
minimum

Location
Action

Minimum tag boundary of the monitored tag range. Tags in this
range will have their activity set to inactive when unseen by the
action for activity timeout seconds

activity tag
range
maximum

Location
Action

Maximum tag boundary of the monitored tag range. Tags in this
range will have their activity set to inactive when unseen by the
action for activity timeout seconds

latitude
identity

GPS
Action

Identity of the latitude field in source data

longitude
identity

GPS
Action

Identity of the longitude field in source data

x identity Cartesian
Location
Action

Identity of the x coordinate field in source data

y identity Cartesian
Location
Action

Identity of the y coordinate field in source data

z identity Cartesian
Location
Action

Identity of the z coordinate field in source data

fixed x Fixed
Location
Action

Fixed x co-ordinate to use for injected locations

fixed y Fixed
Location
Action

Fixed y co-ordinate to use for injected locations

fixed z Fixed
Location
Action

Fixed z co-ordinate to use for injected locations

20

Types and parameters

Parameter Type Purpose

battery
identity

Tag
Battery
Action

Identity of the battery status field in source data

ok values Tag
Battery
Action

Comma-separated values to parse as ok

warning
values

Tag
Battery
Action

Comma-separated values to parse as warning

failing
values

Tag
Battery
Action

Comma-separated values to parse as failing

unknown
values

Tag
Battery
Action

Comma-separated values to parse as unknown

property
identity

Property
Action

Identity of the field containing the property value

SmartSpace
property

Property
Action

Name of the SmartSpace property to set

Miscellaneous Parameters

Parameter Type Purpose

x GPS Reference Point Platform x coordinate of the reference point

y GPS Reference Point Platform y coordinate of the reference point

longitude GPS Reference Point Longitude of the reference point

latitude GPS Reference Point Latitude of the reference point

21

Types and parameters

Types and properties tree view

Streams

22

Types and parameters

Actions

23

Types and parameters

24

Types and parameters

Miscellaneous Properties

25

Trace Messages

Trace Messages
The External data connector has several trace streams to help monitor performance and spot
issues. These can be enabled using the platform_monitor configuration parameter.

Currently, the platform_monitor configuration parameter must be set in the registry
(Windows) or in /etc/ubisense/platform.conf (Linux) in order to see these trace
messages. Setting them for the whole platform using ubisense_configuration_client
does not currently work.

The trace streams available are as follows:

l data_connector

Periodic messages giving an overview of the number/rate of events and errors occurring.
The rate of these messages is controlled with the report_interval parameter.

l data_connector_debug

Verbose messages giving real-time information on received data and errors encountered.

Not recommended for regular use.

Understanding reports
When enabled, the data_connector stream will output periodic reports summarizing the
number of events and errors that occurred over the report period. These reports are grouped
by action/component and look like the following:

26

Trace Messages

[01/08/2019 18:01:58] data_connector: HttpRequester: Reports for last 10
seconds:
[01/08/2019 18:01:58] data_connector: HttpRequester: 1 HTTP(S) requests
completed, 0 requests failed.
[01/08/2019 18:01:58] data_connector: HttpRequester: 1 JSON objects/arrays
deserialized, 0 deserialization errors, 0 errors parsing action root elements,
1 JSON objects passed to actions
[01/08/2019 18:01:58] data_connector: HttpRequester: 1 locations for
injection, 0 discarded as outside cells, 0 discarded due to arbitration
[01/08/2019 18:01:58] data_connector: HttpRequester: 1 properties for
settings, 1 discarded as value unchanged, 0 errors setting value
[01/08/2019 18:01:59] data_connector: HttpRequester: CartesianAction: 1
objects for parsing, with 0 object/tag retrieval errors, 0 removed by data
fields filter, 0 removed by location filter, 0 location/time parsing errors
[01/08/2019 18:01:59] data_connector: HttpRequester: PropertyAction: 1 objects
for parsing, with 0 object/tag retrieval errors, 0 removed by data fields
filter, 0 unrecognised SmartSpace properties, 0 property value parsing errors
[01/08/2019 18:01:59] data_connector: HttpRequester: TBAction: 1 objects for
parsing, with 0 object/tag retrieval errors, 0 removed by data fields filter,
0 status parsing errors

Each report has a similar format with the general format as follows:

l The first item in the report is the number of operations/attempts that occurred in this
report period

l Subsequent numbers are the number of these total operation/attempts that had
issues/errors

27

Identity language

Identity language
To help with parsing of complex, nested data structure, the service uses a language, mirroring
C# syntax, to help define the significance of data members in stream data. An identity is a
sequence of data labels describing a path to a data member in stream data. Identities are read
from left to right, with the leftmost data label being a top level label and depth increasing as
you move right. An empty identity signifies the root element. The specific syntax of identities
and their composition operators is specific to the format of the data.

JSON
Identities are made up of sequences of object keys, starting with a key in the top level object. A
‘.’ is used to denote a nested object and ‘[x]’ is used to denote a fixed index in an array where x
is the index, starting at 1. For example, the root of the locations in the JSON below is
“Locations” and the y coordinate of tag1 is “Locations[1].Coords[2]”.

{
"Irrelevant": "some_data",
"Locations": [
{

"name": "tag1",
"Coords": [

1,
2,
3

]
},
{

"name": "tag2",
"Coords": [

1,
2,
3

]
}],
"More irrelevant": "some_data"

}

XML
Identities start with an element tag in the root element, each nested element or attribute is
denoted with a ‘.’. Attributes can only be the rightmost element.

28

Identity language

CSV
There is no nesting of data in CSVs. Identities are either empty, for the “root element”, or the
name of a column heading.

29

Supported protocols

Supported protocols
The following outlines the protocols and formats supported by the External data connector
service.

Protocols

HTTP(S) connector

The EDC supports retrieval from an external system via both HTTP and HTTPS with basic
authentication. Custom request headers are also supported. Data provided by the external
system should be in a valid text format.

HTTP(S) receiver

The EDC supports running as an HTTP(S) server, receiving locations via HTTP or HTTPS requests.
Optionally supports use of basic authentication of incoming requests. Data sent to the service
should be in a valid text format.

Web socket connector

The EDC can retrieve data from external systems via a web socket client, optionally supporting
basic authentication. The client will connect, optionally send a configurable initialization
message then wait for the server to send response(s). After a configurable period of no server
communication, the client will close and attempt to reconnect again, sending the initialization
message on reconnect. A compatible server should periodically the required data to connected
clients (optionally after an initialization message), or it should send the required information
once to a connected client and rely on the timeout/reconnect functionality to send more data
when the EDC reconnects.

Formats
Currently, the service only supports (or has planned support for) tag/object data. This may be
location, property or battery/activity data. Formats will be described in terms of the following
definitions:

l Field – A single piece of information in source data e.g. object id or a location
coordinate.

30

Supported protocols

l Action object – A collections of fields, grouped together logically in source data. Together,
these fields contain all information required for an action for a single tag/object.

l Root field – For nested source data formats. A field containing the action object or
collection of action objects.

Text formats

For sources where the data retrieved is a string.

JSON

JSON string data should be a valid JSON object or array of objects. The action object(s) should
be JSON object(s), either singular or as an array. All relevant fields (and all ancestors of that field)
must be a named JSON value or a value in an array with a fixed index.

Fields – All relevant fields must be a named JSON value or a value in an array with a fixed index.

Action objects – All fields for a single object/tag should be within a JSON object, either at the
top level or nested.

Root field – Action objects can be defined as a JSON object/array at the top level or within a
nested field.

Valid examples

{
"name":"object1",
"location":[

12.3,
43.7,
0.0

],
"irrelevant_data":80946

}

31

Supported protocols

{
"system_name":"external source 1",
"status":"good",
"location_data":{

"location_count":2,
"locations":[

{
"name":"object1",
"x":3.2,
"y":4.6,
"z":1.0

},
{

"name":"object2",
"x":2.6,
"y":15.7,
"z":0.8

}
]

}
}

XML

XML data should be a valid XML string. The action object(s) should be an element with one or
more child elements (possibly nested) or attributes. Field values can be the contents of the
elements or attribute values (of the parent element of child elements).

Fields – Relevant fields can be child elements with contents or attributes of the parent or child
elements.

Action objects – Fields for a single object/tag should be contained in a single. When there are
multiple action objects in a single data string, they should be sibling elements with the same
name.

Root field – Action objects can be in XML elements at any level in the tree.

Valid examples

32

Supported protocols

<?xml version="1.0"?>
<ArrayOfLocationObject xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<LocationObject>
<name>TestObject1</name>
<x>4.4679310077186347</x>
<y>7.6369389699012684</y>
<z>0</z>

</LocationObject>
<LocationObject>
<name>TestObject2</name>
<x>6.4845871801881989</x>
<y>7.4083634868303143</y>
<z>0</z>

</LocationObject>
</ArrayOfLocationObject>

CSV

CSV data must start with a row of column headings.

Fields – A column in a single row.

Actions Objects – Each row is treated as an action object.

Root field – CSV data is not nested.

Valid examples

id,x,y,z
TestObject1,4.4679,7.6369,0.0
TestObject2,6.4856,7.4084,0.0

33

Tag namespaces

Tag namespaces
Tag namespaces are used by the External data connector to support non-Ubisense tags for
ObjectTagActions. Currently only EPC tag ids up to 128 bits in length are supported.

Tag namespaces can be specified by adding the appropriate prefix to the start of a tag id
followed by “::”, e.g. EPC-64::1234567890abcdef. Namespaces can be used as tag ids in
SmartSpace, in tag association or for tag parameters for External data connector service
parameters. The tag namespace parameter can be used to automatically prepend the prefix to
parsed tag ids in external data (do not include the “::” in the parameter value).

Some actions or functionality may not be supported for non-Ubisense tags, e.g. battery and
activity data.

Supported Namespace Prefixes
l EPC-64

l EPC-96

l EPC-128

34

	Overview of the External data connector
	Configuration workflow

	Requirements
	SmartSpace
	.NET Core
	External Systems
	JSON
	XML
	CSV

	Installing the External data connector
	Configuring the External data connector
	Creating Stream Objects
	Creating Action Objects
	Parameters for Stream Objects
	Parameters for Actions
	Starting Stream Services
	Updating the configuration

	Configuring Location Action Zones

	Types and parameters
	Types
	Stream Types
	Action Types
	Zones

	Parameters
	Stream Parameters
	Action Parameters
	Miscellaneous Parameters

	Types and properties tree view
	Streams
	Actions
	Miscellaneous Properties

	Trace Messages
	Understanding reports

	Identity language
	JSON
	XML
	CSV

	Supported protocols
	Protocols
	HTTP(S) connector
	HTTP(S) receiver
	Web socket connector

	Formats
	Text formats
	JSON
	XML
	CSV

	Tag namespaces
	Supported Namespace Prefixes

