
SmartSpace®
SmartSpace External Definition
API
From version 3.6

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: https://www.ubisense.com

https://www.ubisense.com/


Copyright © 2020, Ubisense Limited 2014 - 2020. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from
Ubisense at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.com

All contents of this document are subject to change without notice and do not
represent a commitment on the part of Ubisense. Reasonable effort is made to ensure
the accuracy of the information contained in the document. However, due to on-going
product improvements and revisions, Ubisense and its subsidiaries do not warrant the
accuracy of this information and cannot accept responsibility for errors or omissions
that may be contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AngleID® are registered
trademarks of Ubisense Ltd. DIMENSION4™ is a trademark of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/


Page i

Contents

External Definition API 1

Installing .NET API 2

Requirements 2

Installation 2

Install Rules engine developer 2

Install ubisense_code_generator 2

Developer Tools for .NET Core 2

UbisensePlatform and UbisenseApiBase NuGet packages 2

Demo 6

Configuring the external relationship 8

Creating a plugin 10

Code Generator 10

Implementing the plugin 11

Adding package dependencies 11

Implementing the callback class 11

Loading the plugin 14

Loading a plugin 14

Unloading a plugin 15

Threading of callbacks 15

Threading for non-event-based processes 16

Monitor Stream 17

UbisenseApiBase Interfaces 18

IKeyRow 18

Properties 18

Methods 18

IPropertyGetter 18

Methods 18

IPropertySetter 18



Page ii

Methods 18

IPropertyCallback 18

Events 18



External Definition API

External Definition API
The following describes using external definition rules to create a .NET plugin with callbacks,
performing actions on property changes.

1



Installing .NET API

Installing .NET API

Requirements
In order to use the .NET API, you require SmartSpace platform version 3.6 or higher with a
license for the Rules engine developer.

You also need:

l .NET Core SDK

l UbisensePlatform and UbisenseApiBase NuGet packages

l ubisense_code_generator command-line tool

Installation

Install Rules engine developer

If you do not already have the Rules engine developer, make sure the SmartSpace platform
includes a license for it, and install the feature using Service Manager. (For further information
on all aspects of installation, see SmartSpace Installation.)

Install ubisense_code_generator
The ubisense_code_generator command-line tool is deployed using the Ubisense Application
Manager. Select the DOWNLOADABLES task, and select Ubisense/Business rules/External
plugin tools. Click Download selected items and specify a path into which the tool will be
written. This will typically be a folder that is on the user PATH, to make it easy to run the tool.

After you have downloaded it, you must unzip the tool.

Developer Tools for .NET Core

If you have not already installed it, you need the .NET Core SDK.

UbisensePlatform and UbisenseApiBase NuGet packages

You can find UbisensePlatform and UbisenseApiBase NuGet packages in your distribution
directory in the \api\dotnet subdirectory.

Setting up the package source

2



Installing .NET API

Copy the Ubisense package files to an accessible location, for example C:\Ubisense\packages.
Now use one of the following methods to add the package(s) to your project.

Adding sources within the Visual Studio GUI via the NuGet package manager

Configuration of sources can be done within the Visual Studio GUI. By default, this will configure
your global NuGet settings. If you would like to configure NuGet sources for a specific project
only, it is recommended you follow the instructions in Creating a local NuGet.config file for a
Visual Studio solution.

Open your project within Visual Studio and open its NuGet package manager, then click the cog
next to the package source box. Alternatively, choose Tools, Options… and navigate to NuGet
Package Manager, Package Sources.

3



Installing .NET API

In this dialog, click the green plus to add a new package source. Give it a recognizable name
and set the source to the directory containing the UbisensePlatform.nupkg and UbisenseApiBase.nupkg
files. Click OK.

Back in your project’s NuGet package manager, select the new source from the package source
drop down. The Ubisense platform should now be available to install to your project.

Adding sources within the Visual Studio GUI via the csproj file (.NET Core/Standard only)

4



Installing .NET API

For .NET Core and .NET standard project, you can add the source and package details directly to
a .csproj file within the VS GUI. Right click on your project and click edit <ProjectName>.csproj.
The following lines will add a directory to the sources used when restoring your project, where
<source directory> is the directory you want to add, e.g. C:/Ubisense/packages.

  <PropertyGroup>
    <RestoreSources>$(RestoreSources);<source
directory>;https://api.nuget.org/v3/index.json</RestoreSources>
  </PropertyGroup>

The package can then be added with the following lines.

  <ItemGroup>
    <PackageReference Include="UbisensePlatform" Version="3.x.xxxx" />
    <PackageReference Include="UbisenseApiBase" Version="3.x.xxxx" />
  </ItemGroup>

The version number should be the version of your package. Building and restoring packages for
this project should fetch the required files.

This method will not edit the NuGet configuration so the package manager UI and other
projects will not be affected.

Adding sources from the NuGet CLI

NuGet sources can be configured using the NuGet command-line tool. In a command prompt
with NuGet in the path, sources are added using to following command:

nuget sources add -name <source name> -source <path to source>

This will add a source named <source name> and URL/file path of <source> to your NuGet
configuration. By default, this is added to your global NuGet configuration but you can specify a
different configuration file with the -configfile argument as follows:

nuget sources add -name <source name> -source <path to source> -configfile

<path to config file>

This configuration file must already exist and be of a valid format.

Creating a local NuGet.config file for a Visual Studio solution

5



Installing .NET API

A NuGet.config file in the same directory as a Visual Studio solution or project file will be
detected by Visual Studio and used for the purposes of package management, in addition to
the global settings, overriding in case of a conflict.

You can create a new, empty NuGet configuration file by creating a new file named NuGet.config
with the following contents:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
</configuration>

You can then add a source to this configuration file with the nuget sources command, pointing
at this configuration file, allowing use of this source with the package management UI within
Visual Studio or dotnet CLI.

Adding sources from the dotnet CLI

A NuGet package can be added to a project directly with the .NET command-line interface. In
the Visual Studio command prompt, or similar command prompt with the dotnet CLI in the
path, run the following command:

dotnet add <solution> package UbisensePlatform --source <path to source

directory>

This will add the package to your project and immediately resolve it from the source directory
supplied in the argument. However, this will not add this source to your NuGet configuration.
Future restoring and building of this project may succeed, restoring from your NuGet package
cache, but if this cache is cleared the restore will fail. It is recommended that you first add a
source to NuGet for this package, as described in the other sections, then add the package to
your solution without the source argument.

If you have already configured the NuGet sources for this project, the package can be added
with the above command without the source argument.

Demo
We will use a worked example in this document. The example dataset has the following
objects/properties already added to the UDM:

6



Installing .NET API

l A DampedObject type with the following properties:

o An Alpha property of type Double;

o A Damped property of type Double;

o A Reading property of type Double;

l A DampedObject named Object1 with an Alpha value between 0 and 1.

In the example, we will create a service that applies a damping filter whenever a reading is
updated, with the following logic:

Whenever we have a new reading for an object X, set
damped(X) = alpha(X) * reading(X) + (1 – alpha(X)) * damped(X)

7



Configuring the external relationship

Configuring the external relationship
We configure the external relationship in BUSINESS RULES in SmartSpace Config:

1. Create a new external definition by double-clicking <Create new definition> and
choosing external definition.

The name of this definition will determine the name of the DLL we will generate later.

Our demo uses the name DemoExternal.

2. Add the required properties to the definition. Our example service we will need to read
the Alpha, Damped and Reading properties as well as set the Damped property. We
will need to drag all three properties to the slot under external definition uses and the
Damped property to the slot under and sets.

8



Configuring the external relationship

3. Publish the external definition.

9



Creating a plugin

Creating a plugin
Plugin creation requires the ubisense_code_generator tool. See Install ubisense_code_generator
for more information.

Code Generator
The code generator tool generates C# code for accessing the SmartSpace properties defined
in your external definition, with events for property value changes. Generated code implements
interfaces defined in the UbisenseApiBase package, these interfaces are outlined later in this
document. Generated code will be output to the “output/” directory and will contain the
following classes:

l UDM UObject types used by the properties.

l Accessors for the properties with event handlers, implementing IGetter, ISetter and
ICallback.

l KeyRows for the properties, implementing IKeyRow.

l A wrapper class, containing all accessors and an establish event handler. The class will be
named <External name>Wrapper where external name is in Pascal case.

We will run the tool with the name of the external definition we published, DemoExternal. The
result should look like the following:

10



Creating a plugin

Implementing the plugin
To create a plugin, create a .NET standard class library and add the generated code files to it.

Adding package dependencies

The generated code depends on two Ubisense NuGet packages, UbisensePlatform and
UbisenseApiBase. If your project uses package references, you can include these dependencies
by adding the following to your .csproj file.

<ItemGroup>
    <PackageReference Include="UbisensePlatform" Version="3.*" />
    <PackageReference Include="UbisenseApiBase" Version="3.*" />
  </ItemGroup>

Implementing the callback class

Define a class that derives from the wrapper class. This will be the entry point to your plugin.
Add callback functions to the relevant events within the class’ constructor.

11



Creating a plugin

We implement our callback to set the damped value in example_client.csproj in the file DemoExternalImplementation.cs
file. The files in the Autogenerated/ directory are those generated by the code generator tool.
The implementation is as follows:

namespace Ubisense.UDMAPI
{

public class DemoExternal : DemoExternalWrapper
{

public DemoExternal ()
{

            Log.Enabled = true;
            Reading.update += Reading_Update;
            Reading.insert += Reading_Insert;
        }

private void Reading_Insert(ReadingKeyRow key, double newValue)
{

if (!Alpha.GetValue(key.DampedObject, out double alpha))
{

return;
            }

if (!Damped.GetValue(key.DampedObject, out double damped))
{

                damped = 0.0;
            }

double v = alpha * newValue + (1 - alpha) * damped;
            Log.WriteLine($"Updating damped to {v}");
            Damped.SetValue(key.DampedObject, v);
        }

private void Reading_Update(ReadingKeyRow oldKey,
double oldValue,

                                    ReadingKeyRow newKey,
double newValue)

{
Reading_Insert(newKey, newValue);

        }
    }
}

Here we derive from the wrapper class and implement the logic to set the damped value in the
Reading_Insert method, adding callbacks to the reading insert and update events in the

12



Creating a plugin

constructor. The names of key properties in the KeyRow types generated are based on the type
of that key, for example “key.Damped_Object”. If a property used has more than one key
column with the same type, then it adds numbers, so you might have key.Damped_Object1 and
key.Damped_Object2.

Note: There is a “.Log” property in the wrapper which, if enabled, can be used to write to the
“plugin” platform monitor stream.

13



Loading the plugin

Loading the plugin
Plugins are hosted by the Ubisense:Business rules:External plugin host service. Upon loading a
plugin, the service will create an instance of your wrapper class and run until terminated.

Loading a plugin
Define the plugin directory. This is a local parameter external_plugin_directory and will need to
be set in so in the registry or platform.conf on the machine running the service.

If a plugin directory is not configured, the host exits and a trace message is generated:

typed_api_host: plugin directory not set

If the configured plugin directory does not exist the following message is generated:

typed_api_host: plugin directory does not exist

Publish your classlib and copy the directory into the external_plugin_directory. The classlib
directory must have the same name as the classlib’s main DLL, excluding file extension. The
host service will automatically load all plugins in the external_plugin_directory on startup as
well as any new plugins added to the directory during runtime.

For our example we will set external_plugin_directory to C:\UbisensePlugins (this may need to
be set to a different value on your machine). Ensure the external plugin directory exists (and is
empty). Publishing the example_client project will generate an assembly named DemoExternal.dll
along with all its dependencies. The assembly name DemoExternal is set in example_
client.csproj. This assembly name is the same as our class implementing the
DemoExternalWrapper class above.

For example the easiest way to build our DemoExternal assembly is to run:

dotnet publish -o DemoExternal

This will create a DemoExternal folder under the current directory and this entire folder,
containing the host service and all its dependencies, can be moved into the plugin folder we
defined to install it. In our example this means moving DemoExternal and its contents into
C:\UbisensePlugins.

Its plugin service will load this plugin immediately (or the next time it is started if the service is
not currently running) and create an instance of the DemoExternal class, running indefinitely and
listening for callbacks.

14



Loading the plugin

Unloading a plugin
Plugin files will be locked once loaded. To unload a loaded plugin the service must first be
stopped, then the directory removed.

Threading of callbacks
Plugin callbacks are added to an action queue, with a single thread raising callback events per
plugin. The process, from property value changed to plugin callback method execution is as
follows:

1. A change is made to a UDM property used by a loaded plugin.

2. The main UDM callback manager, shared between all plugins, sees the change and passes
the event to each plugin’s callback manager.

3. A plugin callback manager sees the change and adds it to queue of UDM change events
to be raised. Each plugin has a single plugin callback manager for all properties.

4. A Timer regullarly raises an event on the ThreadPool at regular intervals to trigger all
pending UDM change events. With a plugin, UDM change events are guaranteed to be
raised in the order they were received and the next UDM change event will not be raised
until the previous UDM change event callback has completed. There will be at most one
thread per plugin raising UDM change events at any time, so methods attached to these
events should terminate in reasonable time.

5. A UDM change event is raised within an accessor and passed to the attached method(s) in
the Wrapper implementation.

In our example, changing a reading value would look like the following:

1. The host service starts, loading our plugin and creating an instance of our DemoExternal
class.

2. The DemoExternal’s accessors register their properties with the main UDM callback
manager.

3. A Reading value is changed for a DampedObject, e.g. we set a new reading in SmartSpace
Config.

4. The main UDM callback manager sees the change and passes it to the callback manager
used by our plugin’s classes

15



Loading the plugin

5. Our plugin’s callback manager adds an update event to the UDM change events action
queue.

6. The timer triggers and an available thread begins executing actions in our UDM change
events action queue, raising an update event for the DampedObject:Reading property.

7. The update event is raised and the DemoExternal::Reading_Update method is executed.

Threading for non-event-based processes

There is also support for a plugin to have its own thread procedure so it can do non-event-
based things (such as periodically checking/processing something). This is implemented by
overriding the “Run” method in your implementation. The host service will call the Run method
in a new thread once the plugin has been loaded and the constructor called. For example:

namespace Ubisense.UDMAPI
{

public class Exporter: ExporterWrapper
{

       …
override public void Run()
{

while (true) 
{ 

DoSomethingPeriodically();
               System.Threading.Thread.Sleep(1000);
           } 
       }
       …
   }
}

16



Monitor Stream

Monitor Stream
The External plugin host service prints some useful status messages on the typed_api_host
monitor stream.  This can be used to see whether the plugin is loaded correctly.

To enable the trace stream, use the command:

ubisense_configuration_client set platform_monitor typed_api_host

and then restart the External plugin host service.

Example messages are:

typed_api_host: initialising plugin C:\Ubisense\plugins\DemoExternal
typed_api_host: creating instance of callback class type DemoExternal

17



UbisenseApiBase Interfaces

UbisenseApiBase Interfaces
The generated files will all be in the Ubisense.UDMAPI namespace. The interfaces uses are
outlined below.

IKeyRow
Represents a single row of property keys (without value).

Properties
Keys Get the collection of keys

Methods
ToKeyList() Get the collection of keys in string form

IPropertyGetter
Get property rows/values

Methods
GetValue(TKeyRow, Object) Get the value of a row with the provided key
GetAllRows() Get all row key/values pairs

IPropertySetter
Set property values

Methods

SetValue(TKeyRow, Object) Set the value of a row with the the provided key to the provided
value, overriding if already set

DeleteRow(TKeyRow) Delete a row with the provided key

IPropertyCallback
Provides property row events

Events
insert Raised on creation of a new row
update Raised on a row value being changed

18



UbisenseApiBase Interfaces

delete Raised when a row is deleted

19


	External Definition API
	Installing .NET API
	Requirements
	Installation
	Install Rules engine developer
	Install ubisense_code_generator
	Developer Tools for .NET Core
	UbisensePlatform and UbisenseApiBase NuGet packages

	Demo

	Configuring the external relationship
	Creating a plugin
	Code Generator
	Implementing the plugin
	Adding package dependencies
	Implementing the callback class


	Loading the plugin
	Loading a plugin
	Unloading a plugin
	Threading of callbacks
	Threading for non-event-based processes


	Monitor Stream
	UbisenseApiBase Interfaces
	IKeyRow
	Properties
	Methods

	IPropertyGetter
	Methods

	IPropertySetter
	Methods

	IPropertyCallback
	Events



