
SmartSpace
Grenade Tag Support
For version 3.3.6828 and above

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: http://www.ubisense.net.

http://www.ubisense.net/


Copyright © 2019, Ubisense Limited 2014 - 2019. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from
Ubisense at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.net

All contents of this document are subject to change without notice and do not
represent a commitment on the part of Ubisense. Reasonable effort is made to ensure
the accuracy of the information contained in the document. However, due to on-going
product improvements and revisions, Ubisense and its subsidiaries do not warrant the
accuracy of this information and cannot accept responsibility for errors or omissions
that may be contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.net/


Page i

Contents

Overview of Grenade tag support 1

Application-level overview of tag behavior 2

How to configure the sensors 4

Configuring Countdown Ack Threshold 4

Configuring Mode and Value 0 5

Example output using the tracing options 7

Tracing options 7

Simple test setup 7

Sensor (mis)configuration 8

Test traces 8

Test 1: Multiple failed attempts to ack a tag (due to misconfiguration) 8

Test 2: Successful ack of the tag 10

Test 3: Successful ack of two tags simultaneously 10





Overview of Grenade tag support

Overview of Grenade tag support
This guide describes the behavior of a tag attached to a grenade: how it is controlled by using
tag status message acknowledgment via 2.4 GHz wireless, and how its status is pushed to the
server-side schemas to make it available to application-level code. An example configuration
and test results are provided.

1



Application-level overview of tag behavior

Application-level overview of tag behavior
The following describes the behavior of a tag attached to a grenade:

1. Initial state. Initially the tag is not armed and does not transmit anything.

2. When the grenade is armed. At some point the grenade's pin is pulled so that it is armed;
the tag wakes up and transmits at rate 2 Hz, sending the data message 0x0660 (with data
payload 0x0000). This status will be pushed to the TagStatus schema in an expedited way
(i.e. we do not use the normal TagStatus batching for these messages). This allows client
application code to be notified and take some action when a grenade is armed.

3. When the grenade is thrown. When the grenade spoon is released (i.e. when the grenade
is thrown) the tag transmits at 10 Hz, sending the status message 0x0666, for a period of
5 seconds before it 'explodes' and ceases transmissions. The data payload of the status
message is:

l MSB: 'ack count', the number of 2.4 GHz ack messages received (i.e. initially zero)

l LSB: 'message count', the number of transmissions since the spoon was released

4. Tracking the grenade and updating its status during countdown. If the tag transmissions are
picked up by a sensor group, they will be forwarded (in the usual way) to a master sensor
for the tag in that group. The master sensor will update the TagStatus schema every
second (i.e. after 10, 20, 30, 40, 50 messages) if it has managed to generate a location for
the tag in the previous second or if the count of received ack messages is greater than
zero, effectively giving a 4, 3, 2, 1, 0 countdown for tags which are receiving or have
received good sightings. There are no special mechanisms to deal with 'dropped' tag
transmissions because they are highly unlikely in the context (the tag has to get located
by the master sensor so each transmission will be received by a few sensors). This
notification mechanism allows client application code to be notified and take action in
response to the tag countdown.

5. Acknowledging tag transmissions. The sensor software will send ack messages to the tag if
it has a good position for the tag sufficiently close to the time when the grenade
explodes. The purpose of the ack messages is solely to disable the third-party hardware
mechanism for weapons effects. The timing of the ack is determined by the Countdown
Ack Threshold parameter which should be set to some value T, where 0 <= T < 50, such
that an ack will be sent for the tag if:

2



Application-level overview of tag behavior

1. The tag has just been located in this measurement, and

2. The message count in this measurement is greater than T, and

3. The ack count in this measurement is zero

Thus the Countdown Ack Threshold setting allows the user to control how long to wait
before the tag is acknowledged. The default value of Countdown Ack Threshold is 0,
meaning that the tag will be acked as soon as it is thrown. But in practice it may be
preferable to set the threshold higher, because effective calculation of area weapons
effects requires that we know the position of the grenade at the time that it detonated. If
the grenade is thrown into an area where it cannot be tracked then we are better off using
the third-party area weapons mechanism, so we should not ack the tag. However it is not
possible to leave it too long before acking the tag because we would not have time to
get the ack message to the tag before the third-party mechanism was triggered. The
example traces shown later in the document show the behavior when Countdown Ack
Threshold is set to 40.

6. Grenade explosion. The grenade will explode 5 seconds (i.e. fifty transmissions) after the
spoon was released. When the grenade explodes the tag ceases transmitting and
communicates its ack status to the third-party hardware. If no acks have been received
then the third-party hardware kicks off some appropriate area weapons effect evaluation.
When the tag status has message count of 50, the grenade has detonated: this allows
application-level client code to be notified of the grenade detonation.

7. Evaluating area weapons effects. The area weapons effects software should operate
whenever any tag (for a grenade) has status 0x0666 with data 0xXX32, i.e. where XX is the
ack count and 0x32 (decimal 50) is the message count.

l If XX == 0 then the third-party hardware mechanism will be operating, so the area
weapons software must make some arbitration decision (e.g. leave the weapons
effects to the third-party hardware, override the hardware in some way).

l If XX > 0 then the third-party hardware mechanism will have been disabled, in
which case there will also be a valid location available for the tag with the location
at which it was seen shortly before the explosion. By using the tag location,
together with the locations of other players at the same time, the area weapons
effects of the grenade detonation may be calculated.

3



How to configure the sensors

How to configure the sensors
The sensors each require three parameters to be set in order to control the acknowledgement
functions.

The parameters are configured in Location System Config in the Radio section of the Change
sensor parameters configuration screen.

Their values must be configured according to the following guidelines:

Configuring Countdown Ack Threshold
As previously discussed, Countdown Ack Threshold should be set fairly close to the value of
the tag message count when the grenade detonates but low enough such that the sensors have
time to acknowledge the tag . A good compromise is to set the value to the value of the
message count one second before detonation, so if the tag's location is calculated one second
before detonation an ack will be sent. In the current implementation this corresponds to a
value of 40.

4



How to configure the sensors

Configuring Mode and Value 0
The radio Mode parameter must be configured to the value 54. This sets up the radio in the
sensor and starts it running. If the radio mode is not configured to the value 54 then a warning
message will be generated by the sensor if it receives a request to send an ack to the tag. By
default this value is set to zero, which ensures that the sensor will not transmit on the 2.4 GHz
channel (this is required in some installations).

The radio Value 0 parameter must be configured in order to set a suitable transmit power and
transmission ‘on-time’ for each radio transmission. When a sensor transmits an ack to a tag it
actually transmits a repeated sequence of messages over a period of 40 ms, where each
message is about 1 ms duration, and where the sensor can choose randomly whether or not to
transmit each message in the sequence. The Value 0 parameter combines two values:

l The ‘on time’, which represents the probability of transmitting each message, and

l The ‘power setting’ which controls the transmit power of the radio.

The parameters are combined into the single Value 0 parameter using this table:

Approximate Range: 100% 75% 50% 25% 10%

Power setting: 255 210 165 138 129

Power Byte: 0xFF 0xD2 0xA5 0x8A 0x81

On-Time On-Time Byte Decimal "Value 0"

0% * 0x0000 255 210 165 138 129

5% 0x0C00 3327 3282 3237 3210 3201

10% 0x1900 6655 6610 6565 6538 6529

15% 0x2600 9983 9938 9893 9866 9857

20% 0x3300 13311 13266 13221 13194 13185

25% 0x3F00 16383 16338 16293 16266 16257

30% 0x4C00 19711 19666 19621 19594 19585

35% 0x5900 23039 22994 22949 22922 22913

5



How to configure the sensors

40% 0x6600 26367 26322 26277 26250 26241

45% 0x7200 29439 29394 29349 29322 29313

50% 0x7F00 32767 32722 32677 32650 32641

55% 0x8C00 36095 36050 36005 35978 35969

60% 0x9900 39423 39378 39333 39306 39297

65% 0xA500 42495 42450 42405 42378 42369

70% 0xB200 45823 45778 45733 45706 45697

75% 0xBF00 49151 49106 49061 49034 49025

80% 0xCC00 52479 52434 52389 52362 52353

85% 0xD800 55551 55506 55461 55434 55425

90% 0xE500 58879 58834 58789 58762 58753

95% 0xF200 62207 62162 62117 62090 62081

100% 0xFF00 65535 65490 65445 65418 65409

* Note: The 0% setting actually corresponds to 1/256, or 0.4%.

A suitable recommended value for the Value 0 parameter is 16293, corresponding to a 25%
duty cycle and 50% power setting. This should permit the acknowledgement of large numbers
of grenade tags simultaneously thrown into the same building. This is the value used in the
example configurations.

6



Example output using the tracing options

Example output using the tracing options

Tracing options
In order to simplify user setup, a tracing option is provided. In normal use this option would be disabled, but it provides a ‘running
commentary’ on the sensors’ response to tag events which can be helpful if the user is trying to understand the operation of their
particular configuration.

To enable the tracing option, set the platform_monitor global configuration parameter to contain the string tag_countdown, before
rebooting the sensors.

For example, execute the command:

ubisense_configuration_client set platform_monitor tag_countdown

and then reboot the sensors.

Simple test setup
The traces below show some sample output for a simple test setup using a two sensor system; both sensors can see UWB from the
tag(s). Up to four tags are used, all with the tag filter initially set to Always succeed to ensure that we get a location event for each
tag.

7



Example output using the tracing options

Sensor (mis)configuration
Tests 1 and 2 purposefully contain a misconfiguration: the radio has only been configured on one of the two sensors. This is shown
on line 2 of the table below. Line 3 shows the correct configuration as used in test 3.

Sensor Countdown Ack
Threshold Radio Mode Radio Value 0 Test

00:11:CE:D4:06:F0 40 54 16293 all tests

00:11:CE:D4:07:95 40 0 0 tests 1 and 2

00:11:CE:D4:07:95 40 54 16293 test 3

Test traces

Test 1: Multiple failed attempts to ack a tag (due to misconfiguration)

This test shows the tag being processed by 07:95. Both sensors 'see' the tag UWB and there is a random choice between them to
determine the ack-ing sensor. This comes out for 07:95 three times. Each of these ack attempts (msg count = 40, 43, 46) causes a
warning message to be generated because the 07:95 radio has not been configured (and the attempt fails). The fourth time the
other sensor 06:F0 is selected and this sends an ack to the tag at msg count 49, but this doesn't get transmitted until too late and the
tag has not received the acknowledgement at msg count = 50 and therefore the status 50 gets sent to the tag status service.

8



Example output using the tracing options

Tag 1 powered up, button pressed, tracked, acknowledged, but ack not received

[15/06/2018 16:19:29] tag_countdown: 00:11:CE:D4:06:F0: 00:11:CE:D4:06:F0 countdown ack threshold = 40
[15/06/2018 16:19:40] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 countdown ack threshold = 40
[15/06/2018 16:21:05] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 initializes new tag countdown state for
00:11:CE:00:00:00:00:01
[15/06/2018 16:21:05] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_armed_flag
[15/06/2018 16:21:11] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 10
[15/06/2018 16:21:12] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 20
[15/06/2018 16:21:13] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 30
[15/06/2018 16:21:14] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 40
[15/06/2018 16:21:14] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 sends countdown ack to 00:11:CE:00:00:00:00:01
[15/06/2018 16:21:14] sensor_warning: 00:11:CE:D4:07:95: attempt to send radio ack message with power/duty cycle unset
[15/06/2018 16:21:14] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 sends countdown ack to 00:11:CE:00:00:00:00:01
[15/06/2018 16:21:14] sensor_warning: 00:11:CE:D4:07:95: attempt to send radio ack message with power/duty cycle unset
[15/06/2018 16:21:15] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 sends countdown ack to 00:11:CE:00:00:00:00:01
[15/06/2018 16:21:15] sensor_warning: 00:11:CE:D4:07:95: attempt to send radio ack message with power/duty cycle unset
[15/06/2018 16:21:15] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 forwards acknowledgement request for
00:11:CE:00:00:00:00:01 to 00:11:CE:D4:06:F0 at 10.42.5.112:53536
[15/06/2018 16:21:15] tag_countdown: 00:11:CE:D4:06:F0: 00:11:CE:D4:06:F0 sends countdown ack to 00:11:CE:00:00:00:00:01
[15/06/2018 16:21:15] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 50
[15/06/2018 16:21:26] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 ages out old tag countdown state for
00:11:CE:00:00:00:00:01
[15/06/2018 16:27:36] tag_countdown: tag status server ages out old entry for 00:11:CE:00:00:00:00:01 countdown_armed_flag
[15/06/2018 16:27:36] tag_countdown: tag status server ages out old entry for 00:11:CE:00:00:00:00:01 countdown_value

9



Example output using the tracing options

Test 2: Successful ack of the tag

This is the same configuration as (1) but in this case the sensor 06:F0 is selected for the first ack attempt and the tag is successfully
ack-ed.

Tag 1 powered up, button pressed, tracked, acknowledged, ack received

[15/06/2018 16:44:24] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 initializes new tag countdown state for
00:11:CE:00:00:00:00:01
[15/06/2018 16:44:24] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_armed_flag
[15/06/2018 16:44:29] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 10
[15/06/2018 16:44:30] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 20
[15/06/2018 16:44:31] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 30
[15/06/2018 16:44:32] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 40
[15/06/2018 16:44:32] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 forwards acknowledgement request for
00:11:CE:00:00:00:00:01 to 00:11:CE:D4:06:F0 at 10.42.5.112:53536
[15/06/2018 16:44:32] tag_countdown: 00:11:CE:D4:06:F0: 00:11:CE:D4:06:F0 sends countdown ack to 00:11:CE:00:00:00:00:01
[15/06/2018 16:44:32] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 receives 00:11:CE:00:00:00:00:01 confirmation
that it has received an ack message
[15/06/2018 16:44:33] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 306
[15/06/2018 16:44:48] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 ages out old tag countdown state for
00:11:CE:00:00:00:00:01

Test 3: Successful ack of two tags simultaneously

Using the correct radio configuration for both sensors (to improve radio reliability) we show two tags being ack-ed simultaneously.
Note that both final values are 306 which is 1 ack + 50 messages, demonstrating that each tag only heard one ack message (the one
destined for it).

10



Example output using the tracing options

Tag 1 and 2 powered up, button pressed, tracked, acknowledged, but ack not received

[15/06/2018 18:04:46] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 initializes new tag countdown state for
00:11:CE:00:00:00:00:01
[15/06/2018 18:04:46] tag_countdown: 00:11:CE:D4:06:F0: 00:11:CE:D4:06:F0 initializes new tag countdown state for
00:11:CE:00:00:00:00:02
[15/06/2018 18:04:46] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:02 countdown_armed_flag
[15/06/2018 18:04:46] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_armed_flag
[15/06/2018 18:04:54] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:02 countdown_armed_flag
[15/06/2018 18:04:55] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_armed_flag
[15/06/2018 18:04:56] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 10
[15/06/2018 18:04:57] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:02 countdown_value = 10
[15/06/2018 18:04:57] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 20
[15/06/2018 18:04:57] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:02 countdown_value = 20
[15/06/2018 18:04:58] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 30
[15/06/2018 18:04:58] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:02 countdown_value = 30
[15/06/2018 18:04:59] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 40
[15/06/2018 18:04:59] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 forwards acknowledgement request for
00:11:CE:00:00:00:00:01 to 00:11:CE:D4:06:F0 at 10.42.5.112:53536
[15/06/2018 18:04:59] tag_countdown: 00:11:CE:D4:06:F0: 00:11:CE:D4:06:F0 sends countdown ack to 00:11:CE:00:00:00:00:01
[15/06/2018 18:04:59] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:02 countdown_value = 40
[15/06/2018 18:04:59] tag_countdown: 00:11:CE:D4:06:F0: 00:11:CE:D4:06:F0 sends countdown ack to 00:11:CE:00:00:00:00:02
[15/06/2018 18:05:00] tag_countdown: 00:11:CE:D4:06:F0: 00:11:CE:D4:06:F0 receives 00:11:CE:00:00:00:00:02 confirmation that
it has received an ack message
[15/06/2018 18:05:00] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 sends countdown ack to 00:11:CE:00:00:00:00:01
[15/06/2018 18:05:00] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 receives 00:11:CE:00:00:00:00:01 confirmation that
it has received an ack message
[15/06/2018 18:05:00] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:01 countdown_value = 306
[15/06/2018 18:05:00] tag_countdown: tag status server asserts 00:11:CE:00:00:00:00:02 countdown_value = 306
[15/06/2018 18:05:18] tag_countdown: 00:11:CE:D4:06:F0: 00:11:CE:D4:06:F0 ages out old tag countdown state for
00:11:CE:00:00:00:00:02
[15/06/2018 18:05:19] tag_countdown: 00:11:CE:D4:07:95: 00:11:CE:D4:07:95 ages out old tag countdown state for
00:11:CE:00:00:00:00:01
[15/06/2018 18:08:22] tag_countdown: tag status server ages out old entry for 00:11:CE:00:00:00:00:01 countdown_armed_flag
[15/06/2018 18:08:22] tag_countdown: tag status server ages out old entry for 00:11:CE:00:00:00:00:01 countdown_value
[15/06/2018 18:08:22] tag_countdown: tag status server ages out old entry for 00:11:CE:00:00:00:00:02 countdown_armed_flag
[15/06/2018 18:08:22] tag_countdown: tag status server ages out old entry for 00:11:CE:00:00:00:00:02 countdown_value

11


	Overview of Grenade tag support
	Application-level overview of tag behavior
	How to configure the sensors
	Configuring Countdown Ack Threshold
	Configuring Mode and Value 0

	Example output using the tracing options
	Tracing options
	Simple test setup
	Sensor (mis)configuration
	Test traces
	Test 1: Multiple failed attempts to ack a tag (due to misconfiguration)
	Test 2: Successful ack of the tag
	Test 3: Successful ack of two tags simultaneously



