
SmartSpace
RDBMS Map Configuration Guide
For version 3.2

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: http://www.ubisense.net.

http://www.ubisense.net/

Copyright © 2020, Ubisense Limited 2014 - 2020. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from
Ubisense at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.net

All contents of this document are subject to change without notice and do not
represent a commitment on the part of Ubisense. Reasonable effort is made to ensure
the accuracy of the information contained in the document. However, due to on-going
product improvements and revisions, Ubisense and its subsidiaries do not warrant the
accuracy of this information and cannot accept responsibility for errors or omissions
that may be contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.net/

Page i

Contents

Introduction to RDBMS map 1

Features 2

Database connections 2

SQL Server 2

Oracle 2

Exporting 2

Exporting from application data to a database connection 2

Binding columns into queries 2

Scheduled execution 2

Importing 3

Importing from a database connection to application data 3

Multiple properties per query 3

Bound import queries 3

Controlling the insertion and removal of rows 3

Creating/deleting objects 3

Scheduling execution 3

Installation 4

Configuration 5

Background concepts 5

Database connections 5

Creating a connection 5

Testing a connection 6

Editing a connection 6

Deleting a connection 6

Connection examples 6

Filtering imports and exports by type and property 7

Exports 7

Creating, editing and deleting 7

Page ii

Export editor 8

The query editor 10

Scheduling exports 12

Export errors 12

Imports 12

Creating, editing and deleting 12

Import editor 13

Tracing 21

Deployment tool 22

Introduction to RDBMS map

Introduction to RDBMS map
The relational database integration feature is used to export and import SmartSpace data to and
from external databases. The data to be exported and imported can be defined in configuration
pages within the SmartSpace Config application. Imports and exports can be configured
simultaneously to and from multiple databases, as required.

This guide describes the RDBMS map features of SmartSpace, and how they should be
configured, tested and deployed.

The intended audience is those installing and configuring a SmartSpace system or application,
who need to exchange application data with third-party database systems.

1

Features

Features
This section introduces the basic functionality of the RDBMS map feature. For more details see
the specific configuration sections below.

Database connections
A database connection describes the type of database and the connection string used to
connect to that database. The database server types supported are:

SQL Server

Versions: 2008 R2 or higher, using ODBC and SQL Server Native Client library. Limited queries
may work with earlier versions.

Oracle

Versions: 11G R2 or higher, using Oracle Instant Client 12.1 library. Limited queries may work
with earlier versions.

Exporting

Exporting from application data to a database connection

The basic export functionality is to select properties of application objects to export, and to
build export SQL statements to run on a database connection, which include the property fields
(keys and value).

Binding columns into queries

The export SQL statements can also include other properties of the application objects in the
property to be exported.

Scheduled execution

Execution can be triggered every time an included property is changed.

Changed properties can be accumulated and applied periodically in a batch.

Exports can also be executed when a trigger property changes.

2

Features

Importing

Importing from a database connection to application data

SQL queries can be executed against a database connection, and the results loaded into
properties of application objects.

Multiple properties per query

Imports can be configured to map specific columns returned by the SQL query to different
properties of a single application object type.

Bound import queries

Import queries can include properties of the application object type, in which case they are
executed once for each instance of the object type determined by execution conditions.

Controlling the insertion and removal of rows

When new rows are returned by the query, the import can create new property rows or ignore
them. Similarly, when old rows are no longer returned by the query, the import can delete the
property rows or ignore them.

Creating/deleting objects

When the import property is the name property of the imported object type, then the insert
and remove behavior causes object instances to be created or deleted.

Scheduling execution

An import can be executed periodically. Periodically executed imports can include a test query
which returns a string (a "hash" or change control value) that changes only when the main query
needs to be executed. This test query can be skipped occasionally if there is a chance of hash
collisions.

An import can also be executed at specific times every day.

An import can be executed when any of its bound properties change.

Finally, an import can be executed when another trigger property changes.

3

Installation

Installation
The Relational Database Integration feature comprises three service packages:

l URelationalDatabase.xml: Installs the configuration service which allows imports and
exports to be configured in the SmartSpace Config application. This should always be
installed.

l URelationalDatabaseSQLServer.xml: Installs the service that executes imports and exports
with database connections of type "Sql".

o In order to use this service, a suitable ODBC driver for SQL Server should be
installed on the same controller server. For example, SQL Server Native Client 11
for SQL Server 2012 or 2014. See Microsoft documentation of the native client for
specific version numbers.

l URelationalDatabaseOracle.xml: Installs the service that executes imports and exports
with database connections of type "Oracle".

o In order to use this service, the Oracle Instant Client 12.1 should be installed on the
same controller server, and the system PATH environment variable should include
the folder containing the oci.dll library.

All three service packages can be safely installed if integration is required with both database
server types.

The configuration user interface is the RDBMS MAP task of the SmartSpace Config application.
To install this, use the Ubisense Application Manager as described in SmartSpace Installation.
This will ensure that the correct version of SmartSpace Config will be executed to match the
platform you are connected to. Thus for the 3.1.8 features you must have also deployed the
USmartFactoryConfigUI.xml package from the 3.1.8 SmartSpace release.

4

Configuration

Configuration

Background concepts
Later we will refer to "simple" and "complex" properties. For reference, these are defined in
separate parts of the Types and objects workspace in SmartSpace Config.

l A "Simple" property is one which has a single object as key, and a corresponding value.
For example "country code of <Product>: <String>" or "<Product> delivery date
<Time>". Given an instance of the key object type, there is at most a single value of the
property.

l A "Complex" property is one where the key includes several columns, or there can be
multiple values for each key. For example "<Product> is in <Function>: <Bool>" where
the functions can overlap, or "<Product> entry time in <Function>: <Time>", where the
key has multiple columns <Product> and <Function>.

A "name" property is a simple property of an object type with a string value. It is used to
uniquely identify the instance of the object. This might be an unique identifier such as the build
number of a Product, or the process step name of a Function. An object type can have at most
one name property, which may be inherited from its parent types. Thus for a given type of
object, there is either no way to look up the object by its name string, or just one way. This
property is used during import execution.

Database connections

Creating a connection

To create a database connection, double-click <Create new database> in the top pane of the
database integration task in SmartSpace Config. This will bring up the editor.

l Enter a new database name. This must be distinct from any existing connections. Otherwise
the new database connection configuration will replace the existing one, which is unlikely
to be the desired behavior.

l Select the type of database to connect to:SQL Server or Oracle.

l Enter a connection string suitable for the database type.

5

Configuration

Testing a connection

To test that a connection can be made, click Test.

For SQL Server, if an error is generated, for more information go to SQL Server Management Studio
and under Management/SQL Server Logs, look for the notification of a failed login, which
should describe the reason the login failed. If the login failure doesn’t appear in the server log,
check the server name and instance. If they are correct, run the SQL Server Configuration Manager
and ensure that the TCP/IP protocol is enabled for your server instance.

Editing a connection

To edit a database connection, double-click the row in the top pane of the database
integration task in SmartSpace Config. If you change the name, this will be ignored.

Deleting a connection

To delete a connection, select the row, then press Delete.

If the database connection is currently in use within a configured import or export, this will be
indicated and deletion will be cancelled. Otherwise a confirmation dialog is displayed: click Delete
to confirm deletion.

Connection examples
SQL Server

For SQL Server Native Client 11, using Windows authentication, the database MESDB must allow
connection with role db_datareader (for imports) or db_datawriter (for exports) for the NT
AUTHORITY/SYSTEM user (assuming that is the account under which the Ubisense Local
Controller service is executed):

Driver={SQL Server Native Client
11.0};Server=LOCALHOST\SQLSERVER2008;Database=MESDB;Trusted_Connection=yes;

Oracle

For Oracle 11g, server ORACLE01, port 1522, instance mes.production.internal, using user
"MESDB", password "unsafepassword":

MESDB/unsafepassword@ORACLE01:1522/mes.production.internal

or

6

Configuration

MESDB/unsafepassword@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCP)(HOST=ORACLE01)
(PORT=1522)))(CONNECT_DATA=(SERVER=DEDICATED)(SERVICE_NAME=mes.production.internal)))

Filtering imports and exports by type and property
Between the database connection pane and the test of the task there are two filter dropdowns.
These can be used to restrict the displayed exports and imports to only those with the matching
type and/or property. These controls also restrict the choices available in some other
dropdowns within the interface, to make it easier to configure exports or imports relating to a
specific part of the application data model.

If an item you wish to edit is not visible, make sure that the current filter does not exclude it.

Exports

Creating, editing and deleting

To create a new export, double-click on the <Create new export> line in the exports pane. To
edit an export, double-click the export line. In both cases the Export editor is displayed.

To delete an export, select the row and then press Delete. A confirmation dialog is displayed.

7

Configuration

Export editor

In the Export editor, no changes are made to the current configuration until the Save button has
been clicked. It is safe to edit the export upserts and deletes without any impact on the current
configured system. The Cancel button discards any pending changes.

Choose the property to export

At the top of the Export editor is a drop-down which selects the primary application data
property to be exported. Each property can be in only one export definition, but there can be
several "upsert" and "delete" statements in an export, so it is possible to export from a given
property to multiple destination databases, or tables within a database. The primary property
must be selected before any SQL queries can be added, because the columns and value of the
property determine the other related properties which can be embedded into the queries. The
property cannot be changed once it has been saved.

Construct Upsert and Delete queries

An upsert query is executed with current values of the exported properties, and should update
or insert the row in the database to match the current values in the SmartSpace application
data.

A delete query is executed when a specific row is removed from the SmartSpace application
data.

8

Configuration

One important question in database export is: what happens if changes occur within SmartSpace
while the RDBMS map service is stopped? Similarly, what happens if the target database
connection fails, or one of the statements fails to execute? From version 3.4, behavior on service
startup and establish has been improved to ensure the RDBMS module is robust to such events.
The service keeps track of the changes to business objects and properties that have been
successfully applied to the database. In this way it will automatically retry statements that have
failed to execute, and it is able to detect the set of changes that have occurred since it was last
running, and immediately executes the corresponding upsert or delete statements to reflect
these changes in the target database.

To edit or create a query, double-click the appropriate line in the Upsert SQL or Delete SQL list
boxes. This will display the query editor.

Example Upsert

Whilst any SQL statement can be used in both upsert and delete actions, a typical upsert can be
written using the MERGE statement in SQL. For example, in SQL Server:

MERGE FunctionMilestone WITH (HOLDLOCK) AS target
USING (SELECT
[[name<Function>]]
,
[[milestone<Function>]]
) AS source (Name, Milestone)
ON (target.[Function] = source.Name)
WHEN MATCHED THEN
UPDATE SET Milestone = source.Milestone
WHEN NOT MATCHED THEN
INSERT ([Function], Milestone) VALUES (source.Name, source.Milestone)

Here the target table in the database is FunctionMilestone. The export would be of a property
called "milestone <Function>: <String>", which is a simple property of the "Function" type. The
source table of the merge statement is formed by directly creating a single row from the
exported properties bound into the query—this is represented here in pseudo-code by the
syntax "[[property]]".

The keyword "Function" has been escaped with square brackets to avoid an error.
Also note the use of the HOLDLOCK, which is only required if another application
might also modify the target table.

A very similar statement is available in Oracle.

Example deletion

9

Configuration

To make delete statements robust, they should only use a single property value, such as the
name or unique ID of an object in SmartSpace. This is because the changes to business object
properties are processed asynchronously in the RDBMS map service, so by the time they are
executed the other property values for the object may have already been removed.

Consider, for example, an exported property "comment<Product>:String".

We could set the delete statement to be:

DELETE FROM ExportCommentTable WHERE Id=name<Product> AND
Comment=comment<Product>

Now if a given product is deleted in SmartSpace, the name and comment will be
removed. When the change to remove the product name is processed, the comment of the
product has already been removed, so the delete statement will not work.

Instead, we could use the simpler statement:

DELETE FROM ExportCommentTable WHERE Id=name<Product>

Now the statement can be evaluated as the product name is removed, because the service
knows the name that has been removed, and doesn't have to look up the comment of the same
product.

The query editor

The query editor allows a database connection to be selected, and then a sequence of
alternating "SQL Text" and "Property" entries to be configured. These are concatenated to build
the SQL statement to be executed.

The property selection drop-down includes the value of the primary property of the export (at
the very bottom of the list) and also all possible properties of objects otherwise included in the
primary exported property. For example, if the primary property is "<Product> has
<Attribute>", where both Product and Attribute are object types, then the drop down will
include all "simple" properties of Product; all simple properties of Attribute; and the value
'Product' has 'Attribute'.

10

Configuration

When there are multiple columns in the property with a given object type, they will be
distinguished in the drop-down by a number, where the first object of the type will be "1", and
the second "2", etc. For example, if there was a property '<Function> is prerequisite of
<Function> in <Process Map>', then the available properties would include "name 'Function': 1"
and "name 'Function': 2"

When the export is executed for each row of the primary property, the text and selected
property values will be used to create the SQL statement to be executed.

The Save button on the query editor does not actually make any changes to the
currently configured exports. Only the Save button in the Export editor applies the
pending changes.

11

Configuration

Scheduling exports

An export will by default be executed when any property in the export is changed. When a row
is inserted or updated, the upserts will be executed. When a row is deleted, the deletes will be
executed.

If an update period is specified, then changes will be accumulated by the service until that
period expires, and then all changes will be executed at once as a single batch. This is useful if a
SmartSpace property changes frequently, but the integration only requires occasional updates
to the database table, because it reduces the database server load.

It is also possible to specify a trigger property. If a row of the trigger property is inserted,
deleted or changes, then the upserts for the corresponding objects will be executed. If the
trigger property does not share any object types with the exported property then it will have
no effect.

Finally, when the specific database engine service starts, all export upserts are executed for all
current rows of their primary properties.

Export errors

When an error occurs executing an export upsert or delete, the error will be logged to the
"rdb_exception" platform monitor stream. Enable this stream while configuring exports to view
errors in the current configuration. See Tracing for information on other streams.

Unlike imports, there is no Test button.

Imports

Creating, editing and deleting

Double-click on <Create new import> to add a new import definition, and double-click an
existing import to edit it. In both cases the Import editor will be displayed. To delete an
import, select the row and press Delete. A confirmation dialog is displayed.

12

Configuration

Import editor

In the Import editor, no changes are made to the current configuration until the Save button has
been clicked. It is safe to edit the import and test without any impact on the current configured
system. The Cancel button discards any pending changes.

Select the import type

Each import has a primary object type, which is selected in the Import type drop-down, at the
top of the editor. This cannot be changed once an import has been defined, because the type
chosen determines the properties available to import into, and those that can be bound into
queries. If the import is configured to create and delete objects, then those objects will be this
type.

It is not possible to define the query or any imported property mappings until the import type
has been selected.

Define the query

The query definition can be edited by clicking the Edit query button. You cannot directly type
into the query definition text box as this is just for reference. The query editor is the same
window as in the Export editor. Select a database connection to use, and then query is built up
from an alternating list of SQL text and (optional) bound properties.

13

Configuration

There are two forms of import query, and they are executed differently.

l Unbound: When no property drop-downs are configured, and the entire query is
contained in the first "SQL Text" line, then the query will be executed once each time it is
triggered, and all rows applied to the current application data as defined by the property
column mappings.

l Bound: When at least one property drop-down is configured, the query will be executed
separately for each object instance for which it is triggered. See the Execution conditions
section below. The results for each execution will then be applied to the current
application data as defined by the property column mappings. The query shown above is a
bound import query.

In the import configuration, the properties available will all be simple properties of the import
type.

The Save button on the query editor does not actually make any changes to the
currently configured imports. Only the Save button in the Import editor applies the
pending changes.

Property column mappings

Each query can import into one or more properties of the import type. The "Import to
property" section of the editor is used to set up these property mappings, including which
properties are imported to, and which result columns returned by the SQL query map to each
column in the properties.

14

Configuration

Double-click <Create new result> to add a new mapping, or double-click an existing mapping
to edit it. To delete a mapping, select a row and press Delete. No confirmation dialog is shown,
but recall that no changes are actually applied until the "Save" button is clicked in the Import
editor.

Select the property to which the result columns should be imported. Note that each property
can only appear in a single import mapping, so if the property you wish to import to does not
appear in the drop-down, it is probably already mapped in another import. To track down other
uses of a property, use the filter controls in the main task pane.

Then type a comma-separated list of column numbers in the SQL query results to use for that
property. The column numbers start at 1, so to use the first and second result column, type "1,2".

The number of columns that must be specified depends on the type of property selected.

l For a "name" property of the import type, only a single result column should be selected.
Importing to a name property can be used to create and remove instances of objects, in
combination with the "insert new" and "remove old" flags.

l For a "simple" property of the import type, two columns should be selected, one for the
object and one for its column.

l For a "complex" property, one column must be defined for each key of the complex
property, and one for the value.

Any property columns which are objects must be mapped to a string result column which is the
name of the object. When importing the results, the result column string is looked up using the
name property of the object type in the corresponding property column. See below.

Next specify the insertion and removal behavior for this property.

l Insert new: Check this box to insert property rows returned by the query for which the
property key is not currently contained in the SmartSpace application data. If the mapped
property is the name property of the import type, this causes the object to be created
with the given name.

15

Configuration

l Remove old: Check this box to remove property rows not returned by the query for which
there is a current property key in the current SmartSpace application data. If the mapped
property is the name property of the import type, this causes the object instance to be
deleted when no longer returned by the query. For an unbound query, all current
property rows are expected to be returned by the query. For a bound query, only the
property rows for the triggering object are expected to be returned. Any expected rows
which are not returned will be removed if this box is checked. Thus this flag can be used
correctly with bound queries.

The Save button on the property column mapping editor does not actually make
any changes to the currently configured imports. Only the Save button in the Import
editor applies the pending changes.

Testing the query

The import query and mappings can be tested before they are saved. Click the Test query
button at the bottom of the Import editor. To test a query, the service for the database type
must be running (Relational Database SQL Server, or Relational Database Oracle), otherwise an
error will be shown. This is the only part of configuration which requires the database specific
service to be deployed and running.

When a query is executed, a text window is displayed showing the result and technical details.

16

Configuration

The test output includes:

l The SQL statement generated from the configured SQL query.

l Any errors or exceptions generated when the SQL was sent to the database.

l The output columns of the SQL statement, and their internal types and precision. For
reference, the otl_var_dbtype field of each column is one of:

Code Type

1 null terminated string

2 8-byte floating point number

3 4-byte floating point number

4 signed 32-bit integer

5 unsigned 32-bit integer

17

Configuration

Code Type

6 signed 16-bit integer

7 signed 32-bit integer (for 32-bit, and LLP64 C++ compilers), signed 64-bit
integer (for LP-64 C++ compilers)

8 data type that is mapped into Oracle date/timestamp, DB2 timestamp, MS SQL
datetime/datetime2/time/date, Sybase timestamp, etc.

9 data type that is mapped into LONG in Oracle 7/8/9/10/11/12, TEXT in MS SQL
Server and Sybase, CLOB in DB2

10 data type that is mapped into LONG RAW in Oracle, IMAGE in MS SQL Server
and Sybase, BLOB in DB2

11 data type that is mapped into CLOB in Oracle 8/9/10/11/12

12 data type that is mapped into BLOB in Oracle 8/9/10/11/12

16 DB2 TIME data type

17 DB2 DATE data type

18 Oracle timestamp with timezone type

19 Oracle 9i/10g/11g TIMESTAMP WITH LOCAL TIME ZONE type

20 MS SQL Server, DB2, MySQL, PostgreSQL, etc. BIGINT (signed 64-bit integer)
type

23 RAW, BINARY, VARBINARY, BYTEA, VARCHAR BYTE, CHAR BYTE, etc.

27 unsigned 64-bit integer

l The results read when the query was executed, after looking up internal object ids for any
object names read. Note that if the query is a bound query, it is tested with an arbitrarily
chosen instance of the import type picked from the current application data.

l Any type conversion errors when the query results are applied to the mapped properties.

18

Configuration

l The actions that would be applied to the SmartSpace properties if the query were actually
executed right now. Actions are insert row, set row and delete row, and also show
creation and deletion of objects. No actual actions are applied during the test.

Forcing columns to match property types

Sometimes the database binding may have a default type for the results of a query that does
not match the property it is being imported into. For example, if the property has a bool value,
and you are attempting to return '1' from a query as "true", the result is incorrectly converted to
a numeric (i.e. floating point) type by the default Oracle binding. However, it is possible to force
a specific type (and column order) for each return column, using the following syntax:

SELECT COLUMN2 :#1<type>, COLUMN2 :#2<type> FROM ...

The number after the '#' character determines the column number for this result column. The
above statement returns them in the order they are declared. The 'type' in angle brackets
determines how the column is bound. The following set of types is supported:

<char[XXX]>
<double>
<float>
<int>
<bigint>
<ubigint>
<unsigned>
<short>
<long>
<raw[XXX]>
<raw_long>
<timestamp>
<varchar_long>

If you cannot get an import to load correctly because of type errors, try using a suitable type
from the list above for the column which is not working. For example, to return a product name
and a bool 'true' from a table ProductIsActive, we need an integer type for the bool property
value:

SELECT Name, 1 :#<int> FROM ProductIsActive

Importing objects and date/times

Special processing occurs when importing to object and date/time properties.

19

Configuration

l For Object columns in a property, the SQL result must be a string column, and this is
looked-up in the name property of the type to find the instance of the object. If the
instance is not found, then it will be skipped, unless the mapping is to a name property
for the import base type, and the "insert new" flag is set, in which case a new object
instance of that type will be created.

l For Time columns in a property, the importer assumes that the column in the results will
be readable as a datetime (otl_var_dbtype = 8), and will be in UTC. If this is not so,
convert the column within your SQL statement, for example:

CAST(SWITCHOFFSET(datecolumn, '+00:00') AS DATETIME)

Calling stored procedures

In SQL Server connections, you can use the ODBC call markup, and pass parameters too, in your
query.

{ call dbo.MyStoredProcedure([[bound_property]], [[bound_property]]) }

Execution conditions

The final part of configuring an import is to set the execution conditions. There are a number
of options, which can be combined as required. Check the box next to each method you want
to use to trigger execution, and then fill in any parameters for that method.

l Periodic execution: the query is executed at regular intervals, specified in seconds,
minutes, hours or days.

o An optional test query can be specified, which should return a single row with a
single string column. This should be a "hash" or sequence number used to detect
changes to the database. The service records the last value returned by the test, and
if it is the same as the last time it was executed, the import is skipped. Typically this

20

Configuration

query will either use some sort of binary table hash, or a grouped maximum of
some change management column on the table.

o If the test query uses a hash function, then there may be a small chance of a hash
collision, where the data changes but the hash does not. The test can be skipped
occasionally to get around hash collisions.

l At given times during each day: a list of times are specified in 24-hour clock, in the local
time zone.

l When any of the bound properties change: the query is executed when any property
included in the import query definition changes, including inserts and deletes.

l When another trigger property changes: you can specify any other property of the import
type. When a row changes, or is inserted or deleted, the query is executed.

All queries are also executed at startup of the database specific service.

When a bound query is triggered by a property change, it is executed once for each of the
import type object instances in the changed property rows.

When a bound query is triggered by any other method, it is executed once for each current
object instance of the import type in the SmartSpace application data.

When an unbound query is triggered, it is executed once.

Tracing
The following platform monitoring streams are available:

l rdb: Messages about basic functionality such as initialization of the services

l rdb_query: Messages about each query execution, including the statements executed, and
any application data errors.

l rdb_exception: Errors encountered during execution of SQL queries.

21

Deployment tool

Deployment tool
The RDBMS map feature comes with a deployment tool which can be used to save and load
relational database imports and exports to/from a file. The tool can be used to move
configuration from integration to production, or the reverse.

E:\temp\> ubisense_relational_database_config.exe
You need to specify a mode
Usage: ubisense_relational_database_config.exe export [OPTIONS]

or: ubisense_relational_database_config.exe import [OPTIONS]
Export and import relational database integration definitions.

OPTIONS
-c, --clear Remove configuration not in the input
-i, --input <input> The input file
-o, --output <output> The output file
--help Display this help and exit
--version Display version information and exit

In export mode, the tool writes all current relational database definitions to the output file (or
the standard output if not specified). The output is a JSON format file, and can be edited with a
text editor if needed. Definitions include databases, imports and exports, and all their
properties.

In import mode, the tool reads the input file (or the standard input if not specified) and applies
the definitions to the current relational database configuration, updating matching existing
configuration. If the -c option is given, it also removes any other databases, imports and
exports not in the current input.

For example, to save the configuration to file defs.js:

ubisense_relational_database_config.exe export -o defs.js

To load the configuration from defs.js, clearing any existing configuration:

ubisense_relational_database_config.exe import -i defs.js -c

To get the tool, run Application Manager, click DOWNLOADABLES, and select Application integration > RDBMS admin tools > ubisense_relational_database_
config.exe. Click Download.

22

	Introduction to RDBMS map
	Features
	Database connections
	SQL Server
	Oracle

	Exporting
	Exporting from application data to a database connection
	Binding columns into queries
	Scheduled execution

	Importing
	Importing from a database connection to application data
	Multiple properties per query
	Bound import queries
	Controlling the insertion and removal of rows
	Creating/deleting objects
	Scheduling execution

	Installation
	Configuration
	Background concepts
	Database connections
	Creating a connection
	Testing a connection
	Editing a connection
	Deleting a connection
	Connection examples

	Filtering imports and exports by type and property
	Exports
	Creating, editing and deleting
	Export editor
	The query editor
	Scheduling exports
	Export errors

	Imports
	Creating, editing and deleting
	Import editor

	Tracing

	Deployment tool

