
SmartSpace®
ObjectView API
From version 3.8

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: https://www.ubisense.com

https://www.ubisense.com/

Copyright © 2023, Ubisense Limited 2014 - 2023. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from Ubisense
at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.com

All contents of this document are subject to change without notice and do not represent
a commitment on the part of Ubisense. Reasonable effort is made to ensure the accuracy
of the information contained in the document. However, due to on-going product
improvements and revisions, Ubisense and its subsidiaries do not warrant the accuracy of
this information and cannot accept responsibility for errors or omissions that may be
contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AngleID® are registered trademarks
of Ubisense Ltd. DIMENSION4™ and UB-Tag™ are trademarks of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/

Page i

Contents

Configuring the ObjectView API 2

Installing the ObjectView API 3

ObjectView Services 3

Installing the ubisense_object_view_config tool 3

Enabling WebSockets 3

Enabling WebSockets on a Windows Server 3

Enabling WebSockets on a Windows desktop machine 4

Enabling WebSockets on Linux 5

Installing the Client Side Library 5

Views in the ObjectView API 6

Defining Views 8

Data views and Location views Compared 11

Data view definition 12

Properties 12

Representations 14

Tags 15

Update 15

Name 16

Type Mappings 16

Space Properties 16

Location view definition 17

Connecting the ObjectView client 18

Using Anonymous and Authenticated Connections in ObjectView 19

Adding a view 19

Getting a document from a view 21

Getting cells covering an area 21

Getting Background Representations 22

Updateable Views 23

Page ii

Low-level commitChanges method 23

High-level interface 24

Transactional writes of object properties 25

ObjectView API worked example 26

Application scenario 27

Tasks, Stations and Assets 27

Measuring asset usage on tasks 27

Visibility of the data 27

Implementation 28

Data model 28

Business rules and event handlers 29

Models, searches and representations 30

Document views 32

A simple reactive HMI built using document views 34

Example of an updateable property 39

Dealing with races in reacting to view updates 41

1

Configuring the ObjectView API

Configuring the ObjectView API
This guide describes the implementation of the SmartSpace ObjectView API, how to install
necessary services and how to define views. A final section provides a worked example showing
the complete process of using the ObjectView API to develop a solution to a real-world problem.

2

Installing the ObjectView API

Installing the ObjectView API
The ObjectView API requires SmartSpace version 3.8 or above.

ObjectView Services
The ObjectView API is included in SmartSpace Web, and can be accessed provided the ObjectView
services have been deployed to SmartSpace. These are installed if you have the HMIs feature
ticked in Service Manager during installation. See Installing the HMIs feature for further
information.

Installing the ubisense_object_view_config tool
Views are defined by loading a JSON file into the SmartSpace configuration, using the ubisense_
object_view_config tool.

To get the tool, run Application Manager, open the DOWNLOADABLES task, and expand
Visibility/Object view admin tools. Select ubisense_object_view_config.exe and click Download
selected items. Optionally, change the download destination directory, and then click Start
download.

Enabling WebSockets
In order for the website to efficiently serve multiple clients with minimal activity, it is necessary to
enable WebSockets. If WebSockets are not supported, the clients will fall back to less efficient
methods such as long polling, but the results should still appear identical at the client end, with
immediate notifications of updates.

Enabling WebSockets on a Windows Server

For IIS, the WebSocket protocol needs to be added as a feature. For example, on Windows Server
2012 and above:

1. On the Windows taskbar, click Server Manager.

2. In Server Manager, click the Manage menu, and then click Add Roles and Features.

3. In the Add Roles and Features wizard, click Next. Select the installation type and click Next.
Select the destination server and click Next.

3

Installing the ObjectView API

4. On the Server Roles page, expand Web Server (IIS), expand Web Server, expand
Application Development, and then select WebSocket Protocol. Click Next.

5. If no additional features are needed, click Next. Click Install.

6. When the installation completes, click Close to exit the wizard.

Enabling WebSockets on a Windows desktop machine

For a Windows desktop machine, the WebSocket feature needs to be turned on.

For example, for a Windows 10 machine, enable WebSocket as follows:

1. Go to the Apps & features section of Settings, by choosing Settings from the Start menu
and then choosing Apps; or by typing "Add or Remove Programs" at the Start menu.

2. Click Programs and Features (under Related settings).

3. In Programs and Features, click Turn Windows features on or off.

4. In the Windows Features dialog, expand Internet Information Services, expand World Wide
Web Services, expand Application Development Features, and then select WebSocket
Protocol.

5. Click OK to save the setting, and then close any other windows you opened.

4

Installing the ObjectView API

Enabling WebSockets on Linux

For Linux, if you are using a reverse proxy such as Apache, this needs to be configured to allow
WebSockets. Themod_proxy_wstunnelmodule can be used to support this. See the Apache
website for instructions on how to configure this module.

Installing the Client Side Library
Clients use SignalR to connect to ObjectView. There is a JavaScript ObjectView client API which
wraps the basic SignalR methods and messages to provide a more convenient interface. This
JavaScript module is open source and is accessible from GitHub and npmnpmjs.

The client library is available at https://github.com/Ubisense/objectview, where there is a node
package hosted on GitHub's package repositorywhere there is a node package published on both
npmjs, and on GitHub's package repository. So for npm you can use:

npm install @ubisense/smartspace.objectview

The default is to use npmjs, which requires no authentication to install the package.

You will need to be authenticate with GitHub to use this method, but any GitHub user can
download the package.If you choose to use the GitHub repository, then you will need to be
authenticated with GitHub to use this method, but any GitHub user can download the package.
Follow the instructions on GitHub (at https://docs.github.com/en/packages/working-with-a-github-
packages-registry/working-with-the-npm-registry) to direct npm to the GitHub repository, and to
set up authentication.

5

https://httpd.apache.org/
https://httpd.apache.org/
https://github.com/Ubisense/objectview
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-npm-registry
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-npm-registry

Views in the ObjectView API

Views in the ObjectView API
A view in the ObjectView API is essentially a map from object IDs to objects ("documents")
containing their properties. This is analogous to the model used in document-oriented
databases, such as MongoDB. Clients can request the document for a given object key, or can get
a complete dump of the view, which is kept up-to-date by push notifications from the server. For
example, a view of the properties of Workspace objects might look like this:

6

Views in the ObjectView API

{
"04007zRgDRO3m1LP000Pi000046:UserDataModel::[Custom]Workspace": {

"extent": {
"type": "Feature"
"geometry": {

"type": "Polygon"
"coordinates": [[[-11,20],[-1,20],[-1,10],[-11,10]]],

},
"properties": {

"stationary": true,
"zmax": 3,
"zmin": 0

},
},
"name": "Wheel Alignment",
"order": "0",
"products": [

"04007zRgDRO3m1LP000Pi0000J5:UserDataModel::[Custom]Product",
"04007zVMVGa1Tk1r000SNG0004R:UserDataModel::[Custom]Product",
"04007zVMVGa1Tk1r000SNG0004T:UserDataModel::[Custom]Product",
"04007zXDZkN88Dnz000E5G000Br:UserDataModel::[Custom]Product"

]
},
"04007zRgDRO3m1LP000Pi000049:UserDataModel::[Custom]Workspace": {

"extent": {
"type": "Feature"
"geometry": {

"type": "Polygon"
"coordinates": [[[10,20],[20,20],[20,10],[10,10]]],

},
"properties": {

"stationary": true,
"zmax": 3,
"zmin": 0

},
},
"name": "Headlight Alignment",
"order": "1",
"products": [

"04007zRgDRO3m1LP000Pi0000J3:UserDataModel::[Custom]Product"
]

},
...
}

The properties of each document are the named fields "extent", "name", "order" and "products".
Here "extent" is a space property, returned as a polygon GeoJSON feature. "name" and "order" are
both simple value properties. The "products" property has an array value, because it is based on a
complex property in SmartSpace, i.e. there can be more than one row in SmartSpace containing
the given key object. In this case, products indicates the set of Product objects currently contained
within a given Workspace.

7

Defining Views

Defining Views
Views are defined by loading a JSON file into the SmartSpace configuration, using the ubisense_
object_view_config tool. The tool operates in two primary modes: import and export.

Usage: ubisense_object_view_config.exe export [OPTIONS]
or: ubisense_object_view_config.exe import [OPTIONS]
or: ubisense_object_view_config.exe remove <view>

Export and import view definitions.

PARAMETERS
view view

OPTIONS
-i, --input <input> The input JSON file

-o, --output <output> The output JSON file

-v, --view <view> The view name to export, otherwise export all
views

--help Display this help and exit

--version Display version information and exit

The import method takes the -i option, and export takes the -o option. If neither is specified,
standard in and standard out are used.

The file must be a valid JSON file, containing either a single view definition object, or multiple
view definitions in an array. Each view definition object has the following properties:

8

Defining Views

Property Meaning

view The name of the view. Must be unique across views – two views cannot share the
same name even if they have different roles.

"view": "Workspaces"

key The type of the objects that this view will contain. This can be:

l the name of the type, as displayed in the TYPES / OBJECTS tab of
SmartSpace Config.

l a raw type name with namespace

l an external typename

"key": "Workspace"

"key": "UserDataModel::[Custom]Product"

"key": "ULocationIntegration::Tag"

roles An array of role strings, defining which roles can access this view.

"roles": ["General User", "Operator"]

properties An object which defines the properties of the key type that will be included in the
view. Each key in the object is the name that will appear in the view, and each
value defines the source property, and optionally column mapping. See the
properties definition discussion below.

"properties": {
"name": "name",
"order": "order",
"products":

{
"source": "'Product' is in 'Workspace'",
"key": 1,
"value": 0

}
}

9

types-and-objects-configuration.htm#t-o-workspace
types-and-objects-configuration.htm#t-o-workspace

Defining Views

Property Meaning

update An object which defines the details of updateable properties in the view. This has
two fields: the roles which are entitled to update the view, and the properties
which are updateable. The updateable properties must be properties that are
already present in the view. See the update definition discussion below.

"update" : {"roles" : ["Operator"], "properties" : ["name",
"order"] }

reps Special field for including object representations. If present, then the value is the
name for the representations property that will appear in the view. See the
representations discussion below.

"reps": "reps"

tags Special field for including associated tags. If present, then the value is the name
for the tag property that will appear in the view. See the tags discussion below.

"tags": "tags"

name Special field for including the external object name. If present, then the value is
the name property that will appear in the view. See the name discussion below.
This is useful for object types which do not have a name property defined the
TYPES / OBJECTS tab of SmartSpace Config.

"name": "name"

locations Special field to make this a location view. This cannot appear with "properties",
"reps", "tags" or "name". The value is an object with one key "period", which
defines the number of seconds between locations being pushed to clients of this
view. This is only used to define a cellular location view. See the discussion on
location views below.

"locations": {
"period": 1

}

Here is an example of a valid view definition JSON file, defining three views in a single file, one of
which is a data view, and the other two location views.

10

types-and-objects-configuration.htm#t-o-workspace
types-and-objects-configuration.htm#t-o-workspace

Defining Views

[
{

"view": "Products",
"key": "Product",
"properties": {

"name" : "name",
"crate": "crate",
"stale": "stale flag",
"marked": "marked",
"workspaces": "'Product' is in 'Workspace'",
"spaces" :
{
"source": "'Product' has entered into workspace 'Workspace' with request reason

'String'",
"key": 0,
"value": { "space": 1, "reason": 2 }
}

},
"reps": "rep",
"tags": "tag",
"roles": ["General User"]

},
{

"view": "ProductLocations",
"key": "Product",
"locations": {

"period": 1
},
"roles": ["General User"]

},
{

"view": "TagLocations",
"key": "ULocationIntegration::Tag",
"locations": {

"period": 5
},
"roles": ["General User"]

}
]

Data views and Location views Compared
A view can only have one of "locations" or "properties" defined. If "properties" is set, then the view
is a data view; otherwise if "locations" is set, then it is a location view. Location views ignore the
values of "reps", "tags" and "name".

Data views and location views have different update behavior. When a property included in a data
view changes, the change is sent out to all clients immediately. But this behavior would be
problematic for location views if there were many objects getting locations at a high update rate.

11

Defining Views

Instead, location views define a period (in seconds) which is the frequency with which the most
recent position for all objects that have moved is sent out as a change.

For example, if a single object is being located twenty times per second, and the period is one
second, then only one change will be sent for that object per second. This behavior gives a fairer
allocation of available network bandwidth to all objects, and scales better to large numbers of
objects getting located at high update rates.

Location views are also instantiated for each cell configured in SmartSpace. A client can ask for
the view at any of the cells, including geometry and site. The view at an individual location cell will
contain fewer objects than at a geometry cell, or at the site cell, and will therefore use less
network bandwidth at the server, per connected client.

Data view definition
To create data views, use "properties", "reps", "tags", "update" or "name" in the view definition.

Properties

"properties" should be an object, where each key in the object is the name of the property that
will appear in the view, and each value is a property definition. A property definition configures
the source, column mappings, and whether the values are basic types or objects. The full form of
a property definition looks like this:

"view property name":
"SmartSpace property name"
|
{

"source": " SmartSpace property name",
"key": columnNumber,
"value": columnNumber | {

"value field name": columnNumber,
…

}
}

We will consider the most complicated case first, then work back to the simplified forms. To
define a property where the value is itself an object with fields taken from the SmartSpace
property, we use the form shown in this example:

12

Defining Views

"spaces" : {
"source": "'Product' has entered into workspace 'Workspace' with request reason

'String'",
"key": 0,
"value": { "space": 1, "reason": 2 }

}

Here the source SmartSpace property is a complex property with the columns: 'Product' at column
0, 'Workspace' at column 1, 'String' at column 2, and a Boolean value at column 3 (not used in this
example). The above definition says each 'Product' in the SmartSpace property will have a
document in the view, and the "spaces" property in that document will be an array of objects, one
for each row in which the product appears. The objects will have fields "space": 'Workspace', and
"reasons": 'String'.

For the definition to be valid, the type of the column specified as the key must match the type of
the view itself. This is checked when the view definition is loaded.

Note that if a given key object instances does not have any matching rows in the source property,
then the view field will not be defined in that object's document. Empty properties are always
cleaned up.

If we just provide a column number for "value", then the property values will not be objects, but
will just be a simple value taken from that column. So the definition below will result in an array of
Workspaces as the "spaces" property of each Product. A Workspace could appear multiple times
in the array (with a different reason, but the reason has been ignored).

"spaces" : {
"source": "'Product' has entered into workspace 'Workspace' with request reason

'String'",
"key": 0,
"value": 1

}

The key and value default to 0 and 1 respectively, if not provided, and this means that the above
definition is equivalent to this:

"spaces" : {
"source": "'Product' has entered into workspace 'Workspace' with request reason

'String'"
}

However, there is an even shorter form of this, because you can provide just a string instead of an
object, so the above is also equivalent to:

13

Defining Views

"spaces" : "'Product' has entered into workspace 'Workspace' with request reason
'String'"

If the source property is a simple property of the view key object type, instead of a complex
property, then there will only be one row per key object, and in this case the value in the view will
not be an array, but just that one value. As with the complex properties, if the key object doesn't
have a value for the property in SmartSpace, then the view document for that object will not have
that property.

This is particularly useful (with the default key and value) for simple properties. For example, if a
Workstation object has a name property "name", you can write:

"name": "name"

This will add a name field with a non-array value being the name of the workspace.

Representations

The field "reps" can be added to a view definition, and should take a string value which is the
name of the view property that will contain representations within each object document.

The value of this property will be an array of representation objects, each of which contains the
mode and the rep details. The rep details include the mode "M", the name of the representation
file "N", and the 2D transform "T" to apply to that file so that it is correctly scaled and offset
relative to the object origin. For example:

"rep": [
{

"mode": "<default>",
"rep": {
"M": "<default>",
"N":

"5B0100007F5BA8D6D80F005564000066C0000000F45D000E555265703A3A4D6F64656C324400.svg",
"T": {

"A": 0.003906,
"B": 0,
"C": 0,
"D": 0.003906,
"E": -0.48764,
"F": -0.491362

}
}

}
]

14

Defining Views

If an object has a specific representation model defined (using Representations assigned to
objects in MODEL ASSIGNMENT in SmartSpace Config), then that will appear as the value of the
named property in the object's document. If a representation is defined for the type of the object
(using Representations assigned to types in MODEL ASSIGNMENT in SmartSpace Config), then it
will appear in a special document with key "type". Only representations with "Show in 2D" are
included.

The 2D transform is an affine matrix that goes from the representation coordinates to the object
coordinates:

Tags

The field "tags" can be added to a view definition, and should take a string value which is the view
property that will contain associated tag IDs within each object document.

The value of this property will be an array of tag IDs that are associated to the key objects.

Update

From version 3.8, the view definition has been extended with an 'update' clause as follows:

"update": {"roles" : [UpdateRole1, ... , UpdateRoleN], "properties" : ["p_1", ... ,"p_
N"]}

The members of the 'roles' array must be legal roles, and the members of the 'properties' array
must be fields of the view such that:

l The view is a data view, and each field in the 'properties' array refers to one of the fields of
the data view

l The property of each field is owned by the site-level data store and is not an assertion

l Each field contains a value for each of the values mentioned in its corresponding property;
that is, the field does not discard any information that exists in the row of the property. As a
special exception to this requirement, if the property has a Boolean value, then the field
does not need to include that value (because it would always be true).

15

model-assignment.htm#obj-rep
model-assignment.htm#obj-rep
model-assignment.htm#Adding

Defining Views

Name

The field "name" can be added to a view definition, and should take a string value which is the
view property that will contain the external name of each object document. This is useful for
object types which don't have a name property defined within SmartSpace. It will also work for
object types which do have a name property, as this is automatically synchronized with the
external name.

The value of this property will be string containing the name of the key object.

Type Mappings

The following type mappings are always used from SmartSpace to ObjectView document values.

SmartSpace Type ObjectViewJSON

Object Stringified object ID

Bool true | false (or undefined if the value of the property)

Double number

Int number

Space GeoJSON feature – see the description in Space Properties

String string

Time milliseconds UTC

Space Properties

When a space property is configured as the source of a property in a data view, the configured
extents of that space are added to the view. If an object has a specific space defined, then that will
appear as the value of the named property in the object's document. If a default space is defined
for the property, then it will appear in a special document with key "type".

The value of the space property is a GeoJSON feature, with the following properties:

16

Defining Views

Property Description

"stationary" If true, then the shape is fixed in place. If false or not present, then the shape is positioned
relative to the origin of the object's location.

"zmax" The top of the space, in meters.

"zmin" The bottom of the space, in meters.

"radius" If the geometry is a Point, then this radius defines the cylindrical extent of the space. This
will not be present if the space geometry is a Polygon.

All coordinates of the space are in meters, and if stationary are in the site coordinates.

Location view definition
To create location views, use "locations" in the view definition. The locations value should be an
object containing the period field, which specifies the number of seconds between each push of
location updates to clients of the view. For example, the following defines a location view
containing the locations of all tag objects, where the updated locations are pushed every five
seconds.

{
"view": "TagLocations",
"key": "ULocationIntegration::Tag",
"locations": {

"period": 5
},
"roles": ["General User"]

}

17

Connecting the ObjectView client

Connecting the ObjectView client
Clients use SignalR to connect to ObjectView. Import the module and then use the ObjectView
class that is exported to connect and access views.

import { ObjectView } from './ObjectView'

…

let objectView = new ObjectView()
.onError(this.onerror.bind(this))
.onConnected(this.onconnected.bind(this))
.connect()

An optional parameter is available in the ObjectView client constructor which, when set to "true",
allows the anonymous user to access the view. See Using Anonymous and Authenticated
Connections in ObjectView for further discussion.

You can also pass a string to attempt to connect to a different hub. For example

new ObjectView('http://localhost/SmartSpace/ObjectView')

will cause the ObjectView client to connect to the SmartSpace view running on port 80 even if the
ObjectView client used in a web page is served on a development server running on port 3000. If
anonymous access is required, then the string should be

new ObjectView('http://localhost/SmartSpace/ObjectViewAnon')

If no string argument is provided, then the ObjectView client will attempt to connect to a
SmartSpace instance running on the same hostname and port that the web page is served from.

The onErrormethod is used to add a callback that is called when an error occurs connecting or
maintaining the connection. The callback is passed an error string and some optional extra
internal information.

onerror: function (err, reason) {
this.status = err
if (reason) this.status = err + ': ' + reason.toString()

}

The onConnectedmethod registers a callback that is called when the connection is established or
reestablished.

18

Connecting the ObjectView client

Using Anonymous and Authenticated Connections in ObjectView

If all users of an SPA are anonymous then you can use the "anon = true" parameter in the
ObjectView client constructor.

However, if the same SPA should be accessible to both anonymous and authenticated users, it is
good practice to write the SPA to explicitly determine whether the user is anonymous and
reconfigure itself appropriately. You could do this by looking at the current page URL to see if it
has "/GetAuth/" in it, but a better approach is to use the "get_user_groups" method of the HMI
interface to inspect the user or roles. For example:

fetch('/SmartSpace/hmiapi/hmipublic/get_user_groups')
.then((response) => response.json())
.then(((data) => {

let isAnonymous = (data.User == 'Anonymous');

// HMI could react to this data and reconfigure appropriately.
this.anonymousUser = isAnonymous;

// Connect to anonymous hub or not, based on this.
this.objectView = new ObjectView(isAnonymous)

.onError(this.onerror.bind(this))

.onConnected(this.onconnected.bind(this))

.connect()

// Then subscribe for views depending on whether anonymous or not.
...

}).bind(this))

Adding a view
To subscribe to a view, with or without a local cache of the contents, use the
ObjectView.subscribe()method. This takes a view definition object that describes how to
subscribe. This can be built using the ObjectView.View()method. For example:

objectView.subscribe(
ObjectView.View('Products')

.setTargetProperty(this, 'products')
)

The View method takes the name of the view, and returns an object which has the following
methods to be called to configure the view subscription.

setTargetObject(target)

Populate target with the contents of the view, and maintain this as the view changes.

19

Connecting the ObjectView client

setTargetProperty(target, propertyName)

Populate the target[propertyName] with the contents of the view. This is useful if
target.propertyName is a reactive object, such as Vue data, as this will correctly add and
remove reactive behavior from each key document in the view.

If no target is specified, then the subscription will only pass change and establish events,
and will not get a dump or cache the contents of the view.

setCell(cell)

Connect to the view at the given cell ID. This is for use with location views. See the getCells
method for a way to get possible cell IDs to pass in this argument. If not specified, the site
cell will be used. There are two special cell IDs that can be passed:

Cell ID Meaning

site The top level site cell, containing all objects in the regular cell hierarchy.

fallback The fallback cell, which contains objects outside the cell extents, and background
representation objects of type "URep::ModelInstance".

onEstablish(cb)

The callback will be called when some view changes may have been missed, such as at the
initial connection of the client, or if the client was disconnected and then reconnected. If a
target was specified, the contents of the target will have been updated to be current before
the establish callback is called.

onChange(cb)

This callback is called when a view property changes. The callback takes a change object
which can be used to maintain cached view contents. If a target has been specified, it will
have already been updated appropriately when this callback is called.

The change object is either an insert, an update, or a delete, as indicated by the "type"
property. The fields of the change object are as follows:

20

Connecting the ObjectView client

Field Value

type 'ins' | 'upd' | 'del'

_id the document key that the change applies to

prop the property name within the document

idx if the property is an array values property, the index of the value that has changed in that
array

val the value being inserted, updated or deleted

old if this is an update, the value being replaced

Getting a document from a view
If only a single view document is required, rather than subscribing to updates, the
ObjectView.getValuemethod can be called.

async getValue(params)

This is an async method that returns the current document from the view on success, and can
throw an exception on error. The params argument should be an object containing:

{ view: '<view name>', cell: '<cell id>', _id: '<object id>' }

The cell should only be used if the view is a location view.

Getting cells covering an area
The cells that cover an area of space can be returned by using the ObjectView.getCellsmethod.
This async method takes a Polygon GeoJSON feature as an argument, with properties zmin and
zmax defining the vertical extent.

21

Connecting the ObjectView client

objectView
.getCells({

type: 'Polygon',
coordinates: [

[
[0, 0],
[100, 0],
[100, 100],
[0, 100],

],
],
properties: {

zmin: 0,
zmax: 10,

},
})
.then((cells) => this.applyCells(cells))

The method returns an array of cell information . Each cell is returned as a GeoJSON polygon
feature, including properties zmin and zmax. The feature also includes following properties:

Property Description

"id" the id of the cell

"name" the name of the cell

"level" the level of the cell, where 0 is a location cell, 1 is a spatial cell, and 2 is the site cell

The "id" property can then be passed as the cell parameter when subscribing to a location view,
or getting a value from such a view.

Getting Background Representations
To get background objects and their representations, you can define two views as follows:

22

Connecting the ObjectView client

[
{

"view": "Background",
"key": "URep::ModelInstance",
"locations": {

"period": 60
},
"roles": ["General User"]

},
{

"view": "BackgroundReps",
"key": "URep::ModelInstance",
"reps": "rep",
"properties": {
},
"roles": ["General User"]

}
]

The first can be subscribed with cell "fallback" to get the positions of all background rep objects
configured in SmartSpace, and the second can be queried or subscribed to get the reps defined
for those objects.

Updateable Views
An updateable view is anything that has an update field. Described below are the two methods for
working with updateable views.

Low-level commitChanges method

The commitChangesmember function on the ObjectView instance takes a list of commands and
commits them all in one transaction. So, if objectView is an instance of an ObjectView type, then
this example will set a single property value, and call the ".then" function on success and the
".catch" function on failure.

var commands = [
{

property : "__<[Custom]Asset>test__<Int>status",
args : [asset_1,this.count/2],
value : (pass ? "PASS" : "FAIL")

}
] ;

this.objectView
.commitChanges(commands)
.then((res)=>console.log(res ? "Changes made" : "No changes made"))
.catch((res)=>console.error("Failed to commit",res));

23

Connecting the ObjectView client

High-level interface

It is useful in some circumstances to construct commands programmatically and commit them
using commitChanges as described above, but the normal usage model is expected to be via a
higher-level interface provided by the static ObjectView functions update and copy, which
respectively generate the commands required to change an object's values in a view target and
generate a copy of an object's data suitable for modification.

ObjectView.copy

If this.assets is a target of an object view, and asset is the ID of an object that is already in the
view, then this invocation:

ObjectView.copy(this.assets,asset)

will return a copy of all the updateable fields that are present in this.assets[asset]. This provides a
convenient way of getting hold of the data from a view in a form that can be modified. To modify
data, it is important that it be a copy of the data in the view target, rather than references to the
view target itself, and ObjectView.copy ensures that every part of the nested document denoted
by this.assets[asset] is copied.

ObjectView.update

If this.assets is a target of an object view, asset is the ID of an object that is already in the view,
and new_asset_values is some set of values with fields corresponding to updateable fields in the
object view, then this invocation:

ObjectView.update(this.assets,asset,new_asset_values)

generates a list of the commands necessary to change the updateable fields in this.assets[asset]
that are mentioned in new_asset_values to have the values they have in new_asset_values. The
generated commands will need to be committed to take effect. Note that if there are updateable
fields in the view that are not mentioned in new_asset_values then they will be unchanged. Note
also that if the view doesn't actually have a value for asset (i.e. there are no current values to diff
with) then ObjectView.update will create the commands necessary to create such an entry, with
the values as defined using new_asset_values.

Committing the results of update

The ObjectView.update function returns objects of the form

{commands : CommandList, commit : <function>}

24

Connecting the ObjectView client

where CommandList is in a form suitable for submission to the objectView.commitChanges
function, but the normal usage is to call the convenience member function commit, which does
the submission itself, by invoking the commitChanges operation. Then this invocation:

let updates = ObjectView.update(this.assets,asset,new_asset_values)
updates.commit()

will both generate and submit the list of the necessary commands.

ObjectView.createObject

The ObjectView.createObject function provides a method to create an object. Once created,
ObjectView.update can be used to set its properties:

v.newObject = ObjectView.createObject("UserDataModel::[Custom]Product");
let updates = ObjectView.update(v.cars,v.newObject,{"name":"Hammer","model":"black"});
updates.commit();

Transactional writes of object properties

The property changes committed by a call to commitChanges or commit are all done in one
transaction and, if any operation in the transaction fails, they are all rolled back

All event handlers triggered by changes in the transaction are queued up until the commit, so that
they are not done if the transaction is rolled back, and, if they are done, they are evaluated in the
context of the state that has received all the changes made in the transaction (this is what you
would always want, and is also necessary because the command generation doesn't give you
control over the order of the changes made).

25

ObjectView API worked example

ObjectView API worked example
The following describes a simple application scenario and its implementation using SmartSpace,
focusing especially on how to use the ObjectView API feature to provide an up-to-date view of
application data that is integrated with the Vue reactive framework.

26

Application scenario

Application scenario

Tasks, Stations and Assets
In a manufacturing company, various tasks are performed in different physical stations. There is a
work plan for each task, requiring the use of various assets, each for a certain period of time. For
example, an inspection task on a vehicle is performed in a specific inspection pit, and requires the
use of a mobile microscope for 2 hours.

Measuring asset usage on tasks
To optimize the manufacturing process we want to monitor the use of assets for tasks, so that we
can build up more accurate data about real task requirements, make more efficient use of assets,
and also detect when there are problems emerging (e.g. if an asset has been in use on a task for
much too long, then this might indicate that something is wrong).

To do this monitoring we will track the locations of the assets, and work out which task they are in
use for finding out which station they are in. When we detect that an asset has started being used
for some task, we will open a ‘usage period’, which will be closed again when the asset stops
being used on the task. By looking at the durations of the usage periods we can build up the
analytical information we need.

Visibility of the data
It is clearly possible to view the resulting usage information in many different ways: filtered by
time period, task, or asset; summed over some set of identical tasks; used as a basis for generating
some dashboard indicators, and so on.

So, we need to be able to build a web user interface to present various views of the usage
information, with the underlying data presented in a flexible way that is easily used by web
developers, but also ensuring that the data is up-to-date in real time for many simultaneous users,
even for large amounts of data and users. This is the motivation for the ObjectView API feature in
SmartSpace Visibility.

27

Implementation

Implementation

Data model
The data model below just formalizes the English description from the application scenario. It is in
a form suitable for import using the ubisense_udm_admin tool.

// The basic entities in the model
declare type Task ;
declare type Station ;
declare type Asset ;

// Task details created by configuration user or imported from task database
declare name property name<Task> ;
declare property station<Task> : Station ;

// Status, changed by user or external system to indicate that the task
// is actively assigned to its corresponding station.
declare property <Task> is active : Bool ;

// Name created by configuration user
declare name property name<Station> ;

// Name created by user or imported from asset database
declare name property name<Asset> ;

// Data created by a user to record a task asset dependency
declare type Asset Requirement ;
declare property task<Asset Requirement> : Task ;
declare property asset<Asset Requirement> : Asset ;
declare property hours<Asset Requirement> : Double ;

// Maintained by rule using spatial containment between asset and station:
declare property <Asset> is in <Station> : Bool ;

// Maintained by an event handler on Asset is in Station:
declare property station<Asset> : Station ;

// Maintained by a rule:
declare property <Asset> is in use for <Asset Requirement> : Bool ;

// Data for asset usage periods maintained by an event handler on 'in use for':
declare type Asset Usage Period ;
declare property start time <Asset Usage Period> : Time ;
declare property end time <Asset Usage Period> : Time ;
declare property requirement<Asset Usage Period> : Asset Requirement ;

28

Implementation

Business rules and event handlers
Some of the state is set by business rules and event handlers. First, the ‘<Asset> is in <Station>’
relation is set using a spatial containment relationship:

In general, station extents will be disjoint, so we can set a station property for each asset when the
‘is in’ relation is set or unset, as follows:

We can then define the conditions for an asset to be in use on a task, as a relationship between
the asset and the relevant task requirement. In terms of assets and tasks, this states that an asset is
in use on a task if and only if it is in the station to which that task is assigned, the task has a
dependency on the asset, and the task is active.

Having detected the conditions for assets to be in use on tasks, we can respond to the relevant
events by creating a new asset usage period when an asset begins to be used,

29

Implementation

and closing that period by setting its end time when the asset ceases to be used.

Models, searches and representations
l Create and import suitable models to represent the asset and station objects. For
example, we used SVG Editor (svgeditoronline.com) to create some simple SVGs and
import them

l Assign the representations to the asset and station types

l Create a role for maintaining the application state, and a role for browsing it, and give the
state maintenance role rights to set the appropriate properties (i.e. all the properties
defined above but not set by rules or event handlers)

l Configure web searches for Stations, Tasks, Assets and Asset Requirements

l Configure web forms for creating and modifying the station, task, asset and asset
requirement data

l Create some appropriate data using the web forms, and position stations using the
SmartSpace configuration tool

These are all standard configuration activities in SmartSpace and we won’t describe them in detail
here because they are fully covered in the existing documentation. In practice, most of the data
would be imported in bulk from external systems using the SmartSpace RDBMS map or External
data connector features.

All the configuration steps above (data model, business rules, web searches and web forms) are
available for loading into a dataset using the file ObjectViewExample.ssc (available from the

30

https://svgeditoronline.com/
https://docs.ubisense.com/portal/Content/Downloads/Files/ObjectViewExample.ssc

Implementation

Ubisense Documentation Portal at https://docs.ubisense.com/portal/Content/Downloads/Files/).
The fully-configured dataset now provides various simple web interfaces to maintain the data and
show it on a map.

For example

l a screen for maintaining tasks

l a screen for maintaining asset requirements

31

Implementation

l a web map showing stations and assets

Document views
Of course, the zero code approach can only go so far, and there will normally be a need for a
range of web user interfaces that are tailored to specific customer needs. The easiest way of
generating these is by coding them using JavaScript.

The ObjectView API feature makes it easy to code web UIs in a reactive framework, by presenting
a set of up-to-date document views to the JavaScript programmer. In our example, we define
views containing details for each of our types (Stations, Tasks, Assets, Asset Requirements, and
Asset Usage Periods), which will be presented as document views.

32

Implementation

[
{

"view" : "Stations",
"key" : "Station",
"roles" : ["Browse Task And Asset Data"],
"properties" : {

"name" : "name",
"tasks" : {

"source" : "station of 'Task'",
"key" : 1,
"value" : 0

}
}

},
{

"view" : "Tasks",
"key" : "Task",
"roles" : ["Browse Task And Asset Data"],
"properties" : {

"name" : "name",
"station" : "station",
"requirements" : {

"source" : "task of 'Asset Requirement'",
"key" : 1,
"value" : 0

}
}

},
{

"view" : "Asset Requirements",
"key" : "Asset Requirement",
"roles" : ["Browse Task And Asset Data"],
"properties" : {

"task" : "task",
"asset" : "asset",
"hours" : "hours",
"usage periods" : {

"source" : "requirement of 'Asset Usage Period'",
"key" : 1,
"value" : 0

}
}

},
{

"view" : "Assets",
"key" : "Asset",
"roles" : ["Browse Task And Asset Data"],
"properties" : {

"name" : "name",
"requirements" : {

"source" : "asset of 'Asset Requirement'",
"key" : 1,

33

Implementation

"value" : 0
}

}
},
{

"view" : "Asset Usage Periods",
"key" : "Asset Usage Period",
"roles" : ["Browse Task And Asset Data"],
"properties" : {

"requirement" : "requirement",
"started" : "start time",
"ended" : "end time"

}
}

]

These view definitions are loaded using the ubisense_object_view_config tool described in
Defining Views.

A simple reactive HMI built using document views
Now we are ready to create an HMI using our document views. We will be using the HMI external
development tool support, so the first step is to create a basic Vue HMI according to the
documentation for the HMI external development tool support.

To add ObjectView support to the HMI, follow these steps:

1. Ensure that the web server for your dataset is version 3.8 or above, so that it supports the
ObjectView server side.

2. Create a personal access token on GitHub, to retrieve the ObjectView library, which is
hosted on GitHub.

To do this:

a. Log in to GitHub (create a new free user if necessary), and select your profile icon.

b. Navigate to Settings/Developer settings/Personal access tokens.

c. Create a new token with scope read:packages, and copy the token text.

3. Create or edit the file .npmrc in the root folder of your HMI source code, and add the
lines:

//npm.pkg.github.com/:_authToken=<YOUR PERSONAL ACCESS TOKEN>

@ubisense:registry=https://npm.pkg.github.com

34

https://github.com/

Implementation

where <YOUR PERSONAL ACCESS TOKEN> is the text of the personal access token you
generated

4. Now add ObjectView to your project by executing:

npm install objectview

Depending on your versions of Vue and node.js, if this works you should find some new content
in node_packages/@ubisense/objectview, node_modules/@ubisense/objectview, or similar.

Now we are ready to create some example code. Create a new component called
‘AssetUsage.vue’, and add the code below. This code does the following:

l Declares reactive data elements which will hold the values of each of the views

l Ensures that when the component is mounted, the data elements are bound to views, so
that they will be guaranteed up-to-date with data from the application server side in
document format

l Defines a function ‘usage_event_details’, that takes the properties of an individual object
from the ‘Asset Usage Periods’ view, and fills in details for the start time, the duration, and
the task, asset and station names

l Defines a computed property ‘usage_view’ that maps the ‘usage_event_details’ function
over all usage periods, to create a summary view of all usage events

l Defines a document template that contains a table, which will show the summary view.
Under the table the JSON for each of the individual views is also shown.

35

Implementation

<template>
<div>

<h1>Usage event summary</h1>
<table v-if="usage_view.length > 0">

<thead>
<tr>
<th v-for="col in Object.keys(usage_view[0])" v-bind:key="col">

{{ col }}
</th>

</tr>
</thead>
<tbody>

<tr v-for="row in usage_view" v-bind:key="row.id">
<td v-for="[key, col] in Object.entries(row)" v-bind:key="key">

{{ col }}
</td>

</tr>
</tbody>

</table>

<h1>Tasks state</h1>
<div>{{ tasks }}</div>

<h1>Assets state</h1>
<div>{{ assets }}</div>

<h1>Usage state</h1>
<div>{{ usage }}</div>

<h1>Stations state</h1>
<div>{{ stations }}</div>

<h1>Requirements state</h1>
<div>{{ requirements }}</div>

</div>
</template>

<script>
import ObjectView from "@ubisense/objectview";

export default {
name: "AssetUsage",
computed: {

// An example of a reactive computed property that creates a view
// showing details of all the usage events that have occurred, with
// their timing details, asset, task and station
usage_view: function () {

var result = [];
var id = 0;
for (const value of Object.values(this.usage)) {

try {
var details = {};

36

Implementation

details["id"] = ++id;
this.usage_event_details(value, details);

} catch (error) {
// If not all the details are available yet, then leave
// this usage event out of the list (see the comment on
// usage_event_details below). When all relevant data
// have been updated, this view will be re-evaluated, and
// the correct data for the detail will be inserted.
console.log(error);
continue;

}
result.push(details);

}
return result;

},
},
// Reactive data which will be bound to object views
data() {

return {
tasks: {},
assets: {},
usage: {},
requirements: {},
stations: {},

};
},
methods: {

// Fill in the details of an individual usage event.

// Note that this method could throw an exception if the data from views are out
// of sync with each other, or if the data in an individual row has not yet been
// completely applied (e.g. in this case it may turn out that the 'started'
// and 'ended' properties are set before the 'requirement' property, and then
// the reactivity framework kicks off some re-evaluation before the 'requirement'
// property has been set on a new row, which would cause the 'usage.requirement'
// reference below to be undefined, and thereby cause an exception to be thrown
// by the 'this.assets[requirement.asset]' expression).
usage_event_details: function (usage, details) {

var requirement = this.requirements[usage.requirement];
details["started"] = new Date(usage.started);
details["duration"] =

usage.ended != undefined
? ((usage.ended - usage.started) / 1000).toFixed(1) + " seconds"
: "in progress";

details["asset"] = this.assets[requirement.asset].name;
details["task"] = this.tasks[requirement.task].name;
details["station"] =

this.stations[this.tasks[requirement.task].station].name;
},
// Subscribe to a data view, storing it in the specified data field
subscribe: function (view, field) {

if (this.objectView == undefined) {

37

Implementation

this.objectView = new ObjectView(true)
.onError((m) => console.error("error", m))
.connect();

}
this.objectView.subscribe(

ObjectView.View(view).setTargetProperty(this, field)
);

},
},
mounted() {

// When the component is mounted, subscribe to the views, binding them
// to the corresponding reactive data items in the component
this.subscribe("Tasks", "tasks");
this.subscribe("Assets", "assets");
this.subscribe("Stations", "stations");
this.subscribe("Asset Requirements", "requirements");
this.subscribe("Asset Usage Periods", "usage");

},
};
</script>

Now edit your App.vue file to load the AssetUsage component:

<template> <div id="app">
<AssetUsage/>

</div>
</template>

<script>
const AssetUsage = () => import("./AssetUsage.vue");

export default {
name: 'App',
components: {

AssetUsage
}

}
</script>

Now when the HMI is loaded, you will see the table containing the asset usage view (with the
underlying data presented below).

38

Implementation

Assuming your network and web server support this, in the console you should see information
that a web socket has been opened, for example:

If you move assets into and out of stations using SmartSpace Config, you will see the table data
being updated instantly.

Example of an updateable property
Suppose we extend the above example, so that we include a new field 'labels', which maps to a
complex property, and make the Assets view updateable, as follows:

39

Implementation

{
"view" : "Assets",
"key" : "Asset",
"roles" : ["Browse Task And Asset Data"],
"properties" : {

"name" : "name",
"requirements" : {

"source" : "asset of 'Asset Requirement'",
"key" : 1,
"value" : 0

},
"labels" : {

"source" : "'Asset' has 'Int' 'Double' cm long labels saying 'String'",
"key" : 0,
"value" : {

"count" : 1,
"length" : 2,
"content" : 3

}
}

},
"update" : {

"roles" : ["Browse Task And Asset Data"],
"properties" : ["name","labels"]

}
},

and suppose we have rows in the database like this:

'Asset 1' has 3 4.0 cm long labels saying 'hello'
'Asset 1' has 4 6.0 cm long labels saying 'goodbye'

and our view target is called this.assets, then it will have contents for the object id of 'Asset 1' with
values something like:

{
name : "Asset 1",
requirements : [],
labels : [{contents : "hello", count : 3, length : 4.0},

{contents : "goodbye", count : 4, length : 6.0}]
}

Now, this code:

40

Implementation

var new_values = ObjectView.copy(this.assets,asset_1);
new_values.labels[0].length = 8.0;
new_values.labels[1].length = 12.0;
ObjectView

.update(this.assets,asset_1,new_values)

.commit()

.then((res)=>console.log(res ? "Changes made" : "No changes made"))

.catch((res)=>console.error("Failed to commit",res));

will generate and execute the minimum set of commands ensure that the view target is changed
to

{
name : "Asset 1",
requirements : [],
labels : [{contents : "hello", count : 3, length : 8.0},

{contents : "goodbye", count : 4, length : 12.0}]
}

Dealing with races in reacting to view updates
Unlike the server-side parts of SmartSpace used for real-time control (e.g. the site level and
cellular rules engine), ObjectView updates are not applied to the target data in a transactional
way. Instead, updates are applied as a sequence of individual operations. For example, when a
new asset usage period is created, the following operations are executed:

l A new entry “<object id>” : {} is added to the ‘usage’ object

l A new field “started” : <start date> is added to the entry

l A new field “requirement” : <requirement object id> is added to the entry

Because the reactivity framework is executed asynchronously to these changes, it is possible that
the computed term ‘usage_view’ is evaluated after the entry has been added, but before the
‘requirement’ field has been added, so that the newest object in the view is incomplete. This is
why the ‘usage_event_details’ function can throw an exception (see the code comments for more
details).

In this case the function could throw as a result of a race between state update and the
application updates triggered by reactivity, but it would also be possible to generate arithmetic
errors (e.g. if there are two separate numeric state items both changed in the same transaction.
When using multiple views, there is also no guarantee of synchronization between separate views.
In general, application programmers need to be aware that their views may transiently
inconsistent, but in normal use this does not create problems because the transients are quickly
resolved.

41

	Configuring the ObjectView API
	Installing the ObjectView API
	ObjectView Services
	Installing the ubisense_object_view_config tool
	Enabling WebSockets
	Enabling WebSockets on a Windows Server
	Enabling WebSockets on a Windows desktop machine
	Enabling WebSockets on Linux

	Installing the Client Side Library

	Views in the ObjectView API
	Defining Views
	Data views and Location views Compared
	Data view definition
	Properties
	Representations
	Tags
	Update
	Name
	Type Mappings
	Space Properties

	Location view definition

	Connecting the ObjectView client
	Using Anonymous and Authenticated Connections in ObjectView
	Adding a view
	Getting a document from a view
	Getting cells covering an area
	Getting Background Representations
	Updateable Views
	Low-level commitChanges method
	High-level interface
	Transactional writes of object properties

	ObjectView API worked example
	Application scenario
	Tasks, Stations and Assets
	Measuring asset usage on tasks
	Visibility of the data

	Implementation
	Data model
	Business rules and event handlers
	Models, searches and representations
	Document views
	A simple reactive HMI built using document views
	Example of an updateable property
	Dealing with races in reacting to view updates

