
SmartSpace®
Kafka Integration with
ObjectView
From version 3.9

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: https://www.ubisense.com

https://www.ubisense.com/

Copyright © 2024, Ubisense Limited 2014 - 2024. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from Ubisense
at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.com

All contents of this document are subject to change without notice and do not represent
a commitment on the part of Ubisense. Reasonable effort is made to ensure the accuracy
of the information contained in the document. However, due to on-going product
improvements and revisions, Ubisense and its subsidiaries do not warrant the accuracy of
this information and cannot accept responsibility for errors or omissions that may be
contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AngleID® are registered trademarks
of Ubisense Ltd. DIMENSION4™ and UB-Tag™ are trademarks of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/

Page i

Contents

Kafka integration with ObjectView 1

Installing the Kafka feature 1

Additional requirements for Linux installations 1

Additional requirements for Windows installations 1

Configuration parameters 1

Specifying Kafka in ObjectView definitions 3

Kafka messages 4

Data-based views 4

Message format 4

Advanced configuration to handle large arrays 6

Event-based views 8

Location views 9

Debugging 10

Kafka integration with ObjectView

Kafka integration with ObjectView

Installing the Kafka feature
The Kafka feature requires SmartSpace version 3.9 or above.

To install the Kafka features:

1. Make sure that the SmartSpace platform includes a license for the correct version of
Applications integration.

2. Install the Kafka feature using Service Manager.

3. Install the ObjectView admin tools.

For further information on all aspects of installation, see SmartSpace Installation.

See Kafka quickstart if you do not have a Kafka cluster.

Additional requirements for Linux installations

You must install librdkafka so that services can find librdkafka.so.1.

Additional requirements for Windows installations

You must install OpenSSL 3.x libraries and add them to your system PATH. For example, when
downloading the libraries from FireDaemon, use the MSI installer and tick the Adjust PATH
system environment box.

Configuration parameters
For Kafka setup, there are two standard Ubisense configuration parameters. If your cluster does
not have security and you want to use only default values for the Kafka producer configuration,
set kafka_brokers to point to the cluster, then the value is passed to the Kafka bootstrap.servers
property. For all other cases, set kafka_producer_config to point to a file containing key-value
pairs for any keys described in Kafka Producer Configuration Reference.

1

https://kafka.apache.org/quickstart
https://kb.firedaemon.com/support/solutions/articles/4000121705-openssl-binary-distributions-for-microsoft-windows
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html

Kafka integration with ObjectView

Parameter Meaning Default value

kafka_
brokers

The value passed to
bootstrap.servers

127.0.0.1:9092

kafka_
producer_
config

Path to a file containing
key-value pairs of producer
configuration

<empty>

Note: kafka_producer_config is a local config param.

If the producer config file contains a value for bootstrap.servers, it takes precedence over the
value of kafka_brokers, so you do not need to configure both parameters. See below for an
example of the producer config file:

list of brokers used for bootstrapping knowledge about the rest of the cluster
format: host1:port1,host2:port2 ...
bootstrap.servers=localhost:9092

specify the compression codec for all data generated: none, gzip, snappy, lz4, zstd
compression.type=none

name of the partitioner class for partitioning records;
The default uses "sticky" partitioning logic which spreads the load evenly between

↪ partitions, but improves throughput by attempting to fill the batches sent to
each

↪ partition.
#partitioner.class=

the maximum amount of time the client will wait for the response of a request
#request.timeout.ms=

how long `KafkaProducer.send` and `KafkaProducer.partitionsFor` will block for
#max.block.ms=

the producer will wait for up to the given delay to allow other records to be sent
so

↪ that the sends can be batched together
#linger.ms=

the maximum size of a request in bytes
#max.request.size=

the default batch size in bytes when batching multiple records sent to a partition
#batch.size=

the total bytes of memory the producer can use to buffer records waiting to be sent
to

↪ the server
#buffer.memory=

2

Kafka integration with ObjectView

Specifying Kafka in ObjectView definitions
Kafka integration uses ObjectView definitions. View the ObjectView API documentation for full
details of how to configure data and location views that can be published to Kafka.

Once you have configured data and location views, edit the file to send messages to Kafka. In the
view definition, add an "integration" field:

{
"view": "Stations",
"integration": {

"transport": "kafka"
},
"key": "Station",
"properties": {

"lane": "lane number",
"seq": "sequence number",
"cars": {

"source": "'Car' is in 'Station'",
"key": "1",
"value": "0"

}
},
"roles": [

"Any"
]

}

The supported transport mechanisms (case-insensitive) are:

l "kafka"

l "monitor" (serialized JSON objects in a single-line)

The monitor mechanisms enable and send messages to standard platform_monitor
streams.

l "pretty monitor" (same as monitor, but formatted over multiple lines)

pretty monitor will not work for large amounts of data because monitor streams use UDP.
However, it is very useful for smaller-scale testing and debugging.

The "roles" field configures which users are allowed to access the object view from the
web site, via the ObjectView API. All ObjectViews need this field, but Kafka integration
ignores it. If the view should be unavailable to the ObjectView API, and only sent to
Kafka, use a single role that is not defined in "USERS/ROLES".

Example data model

3

Kafka integration with ObjectView

To use the view definition in this section and to follow along with the examples below, create the
following simple data model.

ubisense_udm_admin input:

use namespace Custom;
declare type Car : Object;
declare type Station : Object;
declare name property VIN <Car>;
declare name property name <Station>;
declare property lane number<Station> : Int;
declare property sequence number<Station> : Int;
declare property <Car> is in <Station> : Bool;
new Car "car1";
new Car "car2";
new Car "car3";
new Station "station1";
new Station "station2";
new Station "station3";

Kafka messages

Data-based views

The default behavior is as follows:

On establish

When first defining a view, or when ObjectView integration services restart:

l Send a message telling consumers that they need to discard any stored data

l For each object in the view, send a message containing the object data

On change

When data changes. For example, when a car enters or leaves a station:

l For the object whose data has changed, send a message containing all the object data

Message format

If you imported the Example data model into a new dataset, there are no property rows to show
yet. Generate an event using ubisense_udm_admin.

> set "car1" is in "station1" = true;

When an event is generated, a message is sent to Kafka. Based on the example data model and
generated event above, a message will look similar to the following:

4

Kafka integration with ObjectView

Topic : Stations
Key : {

"cell": "04007zd9HKU6T8EE000FCW00002:UCell::Cell",
"id": "04007zd9HMiB0dmw0009EW0000d:UserDataModel::[Custom]Station"
}

Value : {
"cell": "Site",
"seq": 2007088076,
"val": {

"cars": [
"car1"

]
}

}

Topic

The Kafka topic defaults to the view name. Spaces are automatically converted to underscores
because they are not allowed in Kafka topic names. You can configure the topic by adding the
optional "topic" field to the "integration" object, so you can send messages from different views
to the same topic, if required.

{
"view": "Stations",
"integration": {

"topic": "SmartSpace",
"transport": "kafka"

},
"key": "Station",
"properties": {

"lane": "lane number",
"seq": "sequence number",
"cars": {

"source": "'Car' is in 'Station'",
"key": "1",
"value": "0"

}
},
"roles": [

"Any"
]

}

Key

The key is a JSON object that includes the internal ID of the Ubisense object whose value has
changed. For data views like the one above, there is also a "cell" field. For properties managed by
the site-level object property data store or the site-level assertion store, this will always be the site

5

Kafka integration with ObjectView

cell. For properties managed by the cell-level object property data service, this will be the relevant
geometry cell.

Although Kafka consumers are assumed not to have access to Ubisense schema data, the key
uses internal IDs because they are unique and immutable for the lifetime of the object, which is
not the case for object names.

Value

By default, messages contain all the data for the object in the view, so you can turn on Kafka data
compaction without any risk of losing data. On any change, a new message is sent, containing all
the properties in the view, superseding all messages with the same key.

If a value is a named object, the human-readable name is used. This is assumed to be more useful
to Kafka consumers than the internal ID because if they had direct access to Ubisense schemas,
they would not be using Kafka in the first place.

Advanced configuration to handle large arrays

Since Kafka is designed for high throughput, the default behavior of sending all the object data
on every change will normally work fine, but may not always be appropriate. In particular, if there
are thousands of complex property rows, the resulting JSON array will be large. To avoid sending
the entire array on every change, you can configure the view to send only the changes.
Depending on the application, consumers might then need to maintain the view data themselves.

The "integration" field has the following optional members:

Field Value Defualt

establish Possible values are 'data', 'event',
'all', 'none'

data

change Possible values are 'data', 'event',
'all', 'none'

data

To configure the view to send only the changes, add "change": "event" to the "integration" field.
For example:

6

https://docs.confluent.io/kafka/design/log_compaction.html
https://docs.confluent.io/kafka/design/log_compaction.html

Kafka integration with ObjectView

{
"view": "Stations",
"integration": {

"change": "event",
"transport": "kafka"

},
"key": "Station",
"properties": {

"lane": "lane number",
"seq": "sequence number",
"cars": {

"source": "'Car' is in 'Station'",
"key": "1",
"value": "0"

}
},
"roles": [

"Any"
]

}

Now, when the view changes, you get a much smaller message detailing the change. Note,
however, that in general, for each station in the view, there will not be any Kafka message
containing all the data.

When using change messages rather than full data messages, consumers may need to
maintain the data themselves. Use Kafka data compaction with care for these topics.

The value is now a JSON object that includes the view, sequence number (note that this is not the
property sequence number of the UDM in the example), property, and type of event. The fields
are identical to those passed to an object view onChange callback.

Field Value

type Possible values are 'ins', 'upd', 'del'

prop The property name within the document

idx If the property is an array values property, the index
of the value that has changed in that array

val The value being inserted, updated, or deleted

old If this is an update, the value being replaced

For example:

7

Kafka integration with ObjectView

Topic : Stations
Key : {

"cell": "04007zd9HKU6T8EE000FCW00002:UCell::Cell",
"id": "04007zd9HMiB0dmw0009EW0000d:UserDataModel::[Custom]Station"
}

Value : {
"idx": 1,
"prop": "cars",
"seq": 2007153619,
"type": "ins",
"val": "car2",
"view": "Stations"
}

Event-based views

Sometimes, properties can be used as a way simply to deliver messages, and you don’t really
need a full view of all the property rows. For example, the Location simulation feature includes an
assertion <Object> reached waypoint <Object>. This is a transient assertion that goes away
automatically: it can be useful to receive a message when an object reaches a waypoint, but you
may not want to maintain the complete view of objects that have reached waypoints.

In this case, you can add "establish": "none" to the configuration, and Kafka will only get change
messages.

{
"view": "Waypoints",
"integration": {

"change": "event",
"establish": "none",
"transport": "kafka"

},
"key": "Object",
"properties": {

"reached": "'Object' reached waypoint 'Object'",
},
"roles": [

"Any"
]

}

When an object reaches a waypoint, the message will look similar to the following:

8

Kafka integration with ObjectView

Topic : Waypoints
Key : {

"cell": "04007zd9HKU6T8EE000FCW00002:UCell::Cell",
"id": "04007zd9HMiB0dmw0009EW0000X:UserDataModel::[Custom]Car"
}

Value : {
"idx": 0,
"prop": "reached",
"seq": 2361868144,
"type": "ins",
"val": "station1",
"view": "Waypoints"
}

Location views

As with data views, location views use the format from the existing HMIs feature. You can specify
an object type, or ULocationIntegration::Tag for raw tag locations. For example:

[
{

"view": "Car Locations",
"integration": {

"transport": "kafka"
},
"key": "Car",
"locations": {

"period": 5
},
"roles": [

"Any"
]

},
{

"view": "Tag Locations",
"integration": {

"transport": "kafka"
},
"key": "ULocationIntegration::Tag",
"locations": {

"period": 5
},
"roles": [

"Any"
]

}
]

There is one additional optional field in the "integration" object, "cell", which applies to location
views only. The default value is "Site", but you can set this in order to receive location messages
from only a specified geometry or location cell.

9

Kafka integration with ObjectView

Note that locations always come from the site-level aggregation service: any specified cell is just
a simple filter applied in the site-level object view integration service.

Debugging
There are two more valid values for the "transport" field. In addition to "kafka", you can use
"monitor" and "pretty monitor" to send messages to ubisense_trace_receiver. The "transport"
value can be an array of valid values.

[
{

"view": "Tag Locations",
"integration": {

"transport": ["kafka", "monitor"]
},
"key": "ULocationIntegration::Tag",
"locations": {

"period": 5
},
"roles": [

"Any"
]

}
]

"pretty monitor" prints messages over multiple lines, which is much more readable,
but since monitor streams are sent over UDP you are likely to lose some lines. It is
recommended to use "monitor" over "pretty monitor" for detailed debugging.

Messages are automatically sent to the trace stream "ObjectView__<topic>". In this example, the
trace goes to ObjectView__Tag_Locations.

You can enable the additional trace streams "object_view_integration" and "kafka", if required.

10

	Kafka integration with ObjectView
	Installing the Kafka feature
	Additional requirements for Linux installations
	Additional requirements for Windows installations

	Configuration parameters
	Specifying Kafka in ObjectView definitions
	Kafka messages
	Data-based views
	Message format
	Advanced configuration to handle large arrays

	Event-based views
	Location views

	Debugging

