
SmartSpace®
Automated Failover Support
From version 3.5

Ubisense Limited, St Andrew's House, St Andrew's Road, Cambridge CB4 1DL, United Kingdom.

Telephone: +44 (0)1223 535170. Website: https://www.ubisense.com

https://www.ubisense.com/

Copyright © 2023, Ubisense Limited 2014 - 2023. All Rights Reserved. You may not
reproduce this document in whole or in part without permission in writing from Ubisense
at the following address:

Ubisense Limited
St Andrew’s House
St Andrew’s Road
Cambridge CB4 1DL
United Kingdom

Tel: +44 (0)1223 535170

WWW: https://www.ubisense.com

All contents of this document are subject to change without notice and do not represent
a commitment on the part of Ubisense. Reasonable effort is made to ensure the accuracy
of the information contained in the document. However, due to on-going product
improvements and revisions, Ubisense and its subsidiaries do not warrant the accuracy of
this information and cannot accept responsibility for errors or omissions that may be
contained in this document.

Information in this document is provided in connection with Ubisense products. No
license, express or implied to any intellectual property rights is granted by this
document.

Ubisense encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not
condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or
applications to be aware of and comply with different national license requirements.

UBISENSE®, the Ubisense motif, SmartSpace® and AngleID® are registered trademarks
of Ubisense Ltd. DIMENSION4™ and UB-Tag™ are trademarks of Ubisense Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States
and/or other countries. The other names of actual companies and products mentioned
herein are the trademarks of their respective owners.

http://www.ubisense.com/

Page i

Contents

Ubisense Failover 1

The Two Machine Setup 1

Extending the Setup to 2N Machines 2

The reliable networking assumption, errors and precautions 3

Network isolation 3

Network partitioning 4

Precautions 4

Implementation: the binary exclusion protocol and state machine 4

Using the ubisense_failover_control service 6

Failover Parameters 6

Platforms 8

Logging 9

Status reporting and control files 9

Installing Failover 10

Installing Failover version 3 with earlier versions of the Ubisense platform 10

Installing Failover on Windows 11

Installing on 2N Machines 14

Restarting the Ubisense Application Updater 14

Installing Failover on Linux 15

Installing on 2N Machines 17

Example Linux init.d script for ubisense_failover_control 19

Example Linux systemd scripts for ubisense_failover_control 23

Failover configuration example 25

What Happens when the Example Runs 25

Manually Switching between Active and Standby 26

Failing over when Active Goes Down 27

Bringing a Single Machine Down for Maintenance or OS Patching 27

Hot Backup: Taking Scheduled Dataset Backups while the System is Live 28

Ubisense Failover

Ubisense Failover
A common Ubisense failover scenario is the ‘two machine’ setup. In the two machine setup, at any
one time one of the machines is the active machine and the other the standby machine. If the
active machine stops or fails, the standby machine takes over. But it is important to ensure that
both machines do not become active at the same time.

The ubisense_failover_control service implements a protocol between two machines to make
them work in a two machine setup, controlling Ubisense services on both machines, and
minimizing the likelihood of both machines simultaneously becoming active.

The following describes how the ubisense_failover_control service works, and describes how to set
it up to provide failover for a small system, implement scheduled backups in the live system, and
extend the failover support to a large system using 2N separate machines.

The Two Machine Setup
The two machine setup looks like the diagram below. Two similar machines, using standard
operating systems, and whatever VM / HW configuration is required, are run in tandem. Each
machine runs the ubisense_failover_control service. Each instance of the service controls other
Ubisense services and talks to the other instance, using a binary exclusion protocol. The binary
exclusion protocol ensures that one machine is running the ‘active’ Ubisense services (e.g. the
core server, local controller, and replication sender), and the other machine is running the
‘standby’ Ubisense services (e.g. the replication receiver). The Ubisense local controller service on
the active machine will control multiple Ubisense application services as specified by the Ubisense
core server’s service administration schema (see Ubisense Architecture and Protocols on the
Ubisense Documentation Portal for details).

1

Ubisense Failover

A two machine setup running a Ubisense system. At any one time, one machine is in the active
state, and the other machine is in the standby state.

Extending the Setup to 2N Machines
In a two machine setup, the entire set of active Ubisense application services is running on one
single machine (the active machine) at any one time.

But we might want to run across multiple machines for increased throughput in a large system, or
we might want to run our Ubisense system on more than one operating system, for example
Linux for the real-time control elements of the system and Windows for the web visibility
elements. In this case we simply repeat the two machine setup multiple times. In this case for
every pair of machines the active services will include the local controller service (so that Ubisense
application services can be started and stopped), and one pair will also be chosen to host the
Ubisense core server.

In this way we can build up a large system, possibly with different operating systems, by creating
N instances of the two machine setup.

2

Ubisense Failover

This approach can be especially convenient combined with a VM platform. In this case, it is easy to
set up 2N virtual machines mapped onto a suitable set of underlying hardware resources.

Multiple two-machine setups can be combined to cover a large system. In this case we have
three active machines, each of which has a standby machine.

The reliable networking assumption, errors and precautions
Like all binary failover mechanisms, the ubisense_failover_control service assumes that there is a
reliable interconnect between it and its counterpart on the other machine. In the case of ubisense_
failover_control this interconnect is just the standard Ethernet networking between the two
machines. This means that the networking between the machines is the most critical component
in the failover support process; intermittent failure of networking can result in error cases for the
failover protocol.

Network isolation

The first case to consider is the temporary failure of networking on the currently active machine,
leading to unintended network isolation. To the standby machine, this will look just like a failure of
the active machine, so the standby machine will take over. If the networking then recovers on the
isolated machine, both machines will incorrectly be active. The protocol will quickly recover from

3

Ubisense Failover

this error case (both machines will transition to the standby state, and then one of them will
become active) but during the brief ‘both active’ period there may be incorrect system behavior.

Network partitioning

A more serious problem could arise if networking between the active and standby machines fails,
but both machines can still talk to client machines, sensor networks and external systems. In this
case, each side of the failover protocol will assume that the other side is down, and so both
machines will become active. This would be a serious failure: because both machines would still
be able to talk to users of the Ubisense services, this could cause incorrect system behavior over a
long period.

Precautions

To avoid these failure cases the following precautions are advised: when two machines are
configured in a two-machine setup they should have a reliable network between them; when
running VMs, when a VM network interface fails it is better to reboot the machine (allowing a
standby to take over) than to attempt to recover from the network interface failure.

Implementation: the binary exclusion protocol and state
machine
In the binary exclusion protocol, each side has a state consisting of two fields:

l Local status, which can be one of Running, Ready or Stopped. The meaning of the states is:

o Running: this machine is the active Ubisense machine

o Ready: this machine is the standby Ubisense machine

o Stopped: at user request, this machine won’t run any Ubisense services

l Remote status, which can be one of Running, Ready, Stopped, Waiting, or Timeout. The
meanings of the states are as above, plus:

o Waiting: this side of the protocol has just started, and we are waiting to hear from
the remote side

o Timeout: we have failed to hear from the remote side for long enough that we have
exceeded some timeout.

Each side of the protocol repeatedly sends UDP packet containing its current Local status to the
other side, which uses the received value to update its view of Remote status, using the Waiting
and Timeout values to cover cases where it hasn’t (recently) received any value.

4

Ubisense Failover

The basic operation is simple:

l Normally, if the remote machine is Running, the local machine will be Ready, and vice versa.

l If the remote machine is Stopped or Timeout, the local machine will be Running.

l The two machines should never both be Running.

l If both machines are Ready (e.g. at start up time) the machine with the lowest IP address will
transition to Running.

In detail, the operation is decided by this procedure, where the LOCAL STATUS and
REMOTE STATUS define a row in the table below:

1. Ensure that the correct services are Up or Down according to the values of the ACTIVE
SERVICES and STANDBY SERVICES columns below.

2. If the Local IP is less than the Remote IP, set Local status in the way described in LOW IP
STATE CHANGE, otherwise set it in the way described in HIGH IP STATE CHANGE.

3. If there is a value specified for HEALTH REPORT then output it (see Logging for information
on the destination of health reports).

When states are: Applicable operations are:

LOCAL
STATUS

REMOTE
STATUS

ACTIVE
SERVICES

STANDBY
SERVICES

LOW IP
STATE
CHANGE

HIGH IP
STATE
CHANGE

HEALTH
REPORT

Running Running Down Down Ready Ready ERROR

Running Stopped Up Down No change No change NONE

Running Ready Up Down No change No change NONE

Running Waiting Down Down No change No change NONE

Running Timeout Up Down No change No change WARNING

Stopped Running Down Down No change No change NONE

Stopped Stopped Down Down No change No change WARNING

Stopped Ready Down Down No change No change NONE

Stopped Waiting Down Down No change No change NONE

Stopped Timeout Down Down No change No change WARNING

5

Ubisense Failover

When states are: Applicable operations are:

LOCAL
STATUS

REMOTE
STATUS

ACTIVE
SERVICES

STANDBY
SERVICES

LOW IP
STATE
CHANGE

HIGH IP
STATE
CHANGE

HEALTH
REPORT

Ready Running Down Up No change No change NONE

Ready Stopped Down Down Running Running NONE

Ready Ready Down Down Running No change NONE

Ready Waiting Down Down No change No change NONE

Ready Timeout Down Down Running Running WARNING

Using the ubisense_failover_control service

Failover Parameters

The parameters for the service are set locally using one of these mechanisms:

l An entry in the file platform.conf located in this folder:

o Windows: <installdir>\bin

o Linux: /etc/ubisense

l On Windows, string value (with the name of the parameter) in the registry key

HKLM\Software\Ubisense 2.1\Platform\Config

l An entry in the file platform.conf in the folder where the service executable is executed

The following are the failover service parameters:

6

Ubisense Failover

Parameter
name Description Platform Default value

ufc_local_ip The IP address of the network interface to use on
the local machine

Both 0.0.0.0

ufc_remote_
ip

The IP address to send to on the remote machine Both 0.0.0.0

ufc_port The port to bind to on the local machine (and to
send to on the remote machine)

Both 27001

ufc_timeout The time in seconds before the remote machine is
set to have status Timeout

Both 10

ufc_reboot_
on_error

Reboot the local machine if an error is
encountered when attempting to control the other
Ubisense services on the local machine

Both 0

ufc_core Start the Ubisense core server on the local
machine when in the active state

Both 1

ufc_
replication

Start the replication sender on the local machine
when in the active state, and the replication
receiver on the local machine when in the standby
state. If the machines are using some kind of
shared storage mechanism in order to ensure that
they refer to the same data, then replication is not
required and this can be set to 0.

Both 1

ufc_test_
mode

Do not actually start or stop any services, but just
print out which services would be started or
stopped at any time

Both 1

ufc_bin Location of the other Ubisense service executables
on the local machine

Linux only /home/platform/bin

The following are other parameters relevant to failover operation.

7

Ubisense Failover

Parameter
name Description

controller_
node_name

The name of the computing node to be used by the local controller. This provides the
mechanism for the two machines in the two machine setup to identify themselves as the
same machine, and always needs to be set when implementing failover.

failover_
platform_
version

This controls the name of the platform services that failover looks for. This only needs to
be set if you are running a different version of platform services to the version of failover
you are installing. For example, if you were installing failover alongside a version 2.1
platform, you would set failover_platform_version to 2.1 and failover would look for
services named UbisenseCoreServer 2.1 and UbisenseServiceController 2.1. The default
is 3 and this parameter does not need to be set when using a version 3 platform.

replication_
directory

The path of the directory where Ubisense persistent services will write their replication
files. This only needs to be set when using Ubisense Replication, that is when the
parameter ufc_replication above is set to 1.

replication_
receiver_
address

The address of the machine to connect to when sending replication data. This only
needs to be set when using Ubisense Replication services, that is when the parameter
ufc_replication above is set to 1.

sensor_use_
log_as_trace_
dest

Used when running the platform in unicastmode to ensure that sensor trace messages
are correctly routed on failover. To implement this parameter:

1. Run all the logging services on one machine (see Logging for further information
on configuring logging servers).

2. Set the value of sensor_use_log_as_trace_dest to 1.

3. Run the Ubisense / Platform / Unicast monitor proxy service on the same machine
as the logging services.

The effect of setting this parameter is:

l The site level logging server will set the global configuration parameter unicast_
monitor_addr to be the same as its host machine's platform_interface if this is
defined

l Sensors will send trace messages to the IP endpoint A : P, where A is the IP
address component of Location_Cell / Logging_Server / Address_IPv4 for the
sensor, and P is the value of the global configuration parameter unicast_monitor_
port

Platforms

The ubisense_failover_control service runs on Linux and Windows, and implements the behavior
described in the previous section.

8

../../../../../../Content/UserResources/BuildandCreate/Logging/logging-configuration.htm

Ubisense Failover

Logging

The service logs important state changes and error conditions using the event log features of
Windows, or the syslog features of Linux.

Status reporting and control files

The service provides a status reporting and control mechanism based on files in addition to the
logging provided by Windows or Linux.

In the Ubisense dataset directory, the service creates a status file, which is one of:

l ufc_running: this machine is the active machine in the two machine setup

l ufc_ready: this machine is the standby machine in the two machine setup

l ufc_stopped: at user request, this machine is neither active or on standby, and all Ubisense
services (apart from the failover service itself) are stopped.

And in the same directory, the user may request that the service transition state to Stopped by
creating the file ufc_stop. The user can retract that request by removing the ufc_stop file again.

9

Installing Failover

Installing Failover
The following information guides you through the steps required to install UbisenseFailover:

l Installing Failover on Windows

l Installing Failover on Linux

For information on hardware and software requirements, and for general information on
installing SmartSpace, see SmartSpace Installation on the Ubisense Documentation Portal.

If you are also using UbisenseReplication, see Ubisense Replication on the Ubisense
Documentation Portal for further information on its installation and configuration.

Installing Failover version 3 with earlier versions of the Ubisense
platform
Failover version 3 can be installed for use with Ubisense platform version 2.1, for example if ACS
2.6 or earlier is required. To enable Failover to control the 2.1 services, you must set failover_
platform_version to 2.1. See Failover Parameters and the installation instructions that follow for
further information.

10

Installing Failover on Windows

Installing Failover on Windows
Follow these instructions to install and deploy Failover on a single pair of Windows machines. For
information on installing Failover across several pairs of Windows machines, see Installing on 2N
Machines.

On each machine:

1. Install the Ubisense servers.
The server software installer, UbisenseServers.msi, is in the servers\windows directory of
your SmartSpace distribution directory.
For further information on installing SmartSpace software on Windows machines, see
SmartSpace Installation on the Ubisense Documentation Portal.

2. Install Replication (if required).
The replication software installer, UbisenseReplication.msi, is in the servers\windows
directory of your SmartSpace distribution directory.
For further information on installing the replication software on Windows machines, see
Installing Replication on Windows on the Ubisense Documentation Portal.

3. Install Failover.
The failover software installer, UbisenseFailoverControl.msi, is in the servers\windows
directory of your SmartSpace distribution directory.

4. Ensure that the Ubisense servers and replication are not restarted on reboot.

a. Run Platform Control.

b. In Services, ensure that start services automatically on reboot is unchecked.

c. Click Apply.

The services will now be controlled by the failover control service. By visiting Control Panel\All Control Panel Items\Administrative Tools\Services
it should be possible to confirm that the services have startup type Manual.

5. Ensure that the failover service is restarted on reboot.
By visiting Control Panel\All Control Panel Items\Administrative Tools\Services set the
service UbisenseFailoverControl to have startup type Automatic. This will ensure that the
failover service is started when the machine starts up. By using the Recovery tab, it is also
possible to restart the service if it fails.

6. Configure Failover in the Windows registry.
Referring to the table below and using the examples in Failover configuration example,

11

Installing Failover on Windows

configure the failover service. Ensure that the two machines have identical configurations
apart from IP addresses where the local IP on one machine is the remote IP on the other,
and vice versa.

The following are the failover service parameters:

Parameter
name Description Default

value

ufc_local_ip The IP address of the network interface to use on the local machine 0.0.0.0

ufc_remote_
ip

The IP address to send to on the remote machine 0.0.0.0

ufc_port The port to bind to on the local machine (and to send to on the remote
machine)

27001

ufc_timeout The time in seconds before the remote machine is set to have status Timeout 10

ufc_reboot_
on_error

Reboot the local machine if an error is encountered when attempting to
control the other Ubisense services on the local machine

0

ufc_core Start the Ubisense core server on the local machine when in the active state 1

ufc_
replication

Start the replication sender on the local machine when in the active state,
and the replication receiver on the local machine when in the standby state.
If the machines are using some kind of shared storage mechanism in order to
ensure that they refer to the same data, then replication is not required and
this can be set to 0.

1

ufc_test_
mode

Do not actually start or stop any services, but just print out which services
would be started or stopped at any time

1

The following are other parameters relevant to failover operation.

12

Installing Failover on Windows

Parameter
name Description

controller_
node_name

The name of the computing node to be used by the local controller. This provides the
mechanism for the two machines in the two machine setup to identify themselves as the
same machine, and always needs to be set when implementing failover.

failover_
platform_
version

This controls the name of the platform services that failover looks for. This only needs to
be set if you are running a different version of platform services to the version of failover
you are installing. For example, if you were installing failover alongside a version 2.1
platform, you would set failover_platform_version to 2.1 and failover would look for
services named UbisenseCoreServer 2.1 and UbisenseServiceController 2.1. The default
is 3 and this parameter does not need to be set when using a version 3 platform.

replication_
directory

The path of the directory where Ubisense persistent services will write their replication
files. This only needs to be set when using Ubisense Replication, that is when the
parameter ufc_replication above is set to 1.

replication_
receiver_
address

The address of the machine to connect to when sending replication data. This only needs
to be set when using Ubisense Replication services, that is when the parameter ufc_
replication above is set to 1.

sensor_use_
log_as_trace_
dest

Used when running the platform in unicastmode to ensure that sensor trace messages
are correctly routed on failover. To implement this parameter:

1. Run all the logging services on one machine (see Logging for further information
on configuring logging servers).

2. Set the value of sensor_use_log_as_trace_dest to 1.

3. Run the Ubisense / Platform / Unicast monitor proxy service on the same machine
as the logging services.

The effect of setting this parameter is:

l The site level logging server will set the global configuration parameter unicast_
monitor_addr to be the same as its host machine's platform_interface if this is
defined

l Sensors will send trace messages to the IP endpoint A : P, where A is the IP
address component of Location_Cell / Logging_Server / Address_IPv4 for the
sensor, and P is the value of the global configuration parameter unicast_monitor_
port

7. Start Failover and ensure the configuration is working correctly.
After the configuration has been set up appropriately, the failover service can be started.

13

../../../../../../Content/UserResources/BuildandCreate/Logging/logging-configuration.htm

Installing Failover on Windows

Installing on 2N Machines
When installing Failover over multiple pairs of machines, each pair of machines should be
configured as described above with the following exceptions:

l Only one machine pair should be configured to host the core server, so in step 4 the
parameter ufc_core should be set to zero in the platform.conf files for all the other
machine pairs

l Each machine pair needs a new controller name. For example, if there are N pairs, then
each pair could have controller_node_name set to linux_server_1, … , linux_server_N

Restarting the Ubisense Application Updater

14

Installing Failover on Linux

Installing Failover on Linux
Follow these instructions to install and deploy Failover on a single pair of Linux machines each
running the core server and local controller. For information on installing Failover across several
pairs of Linux machines, see Installing on 2N Machines.

On each machine:

1. Copy the servers, replication (if required) and failover control to a bin directory.
You can find the executables in the following locations in your SmartSpace distribution
directory:

servers servers/linux/ubisense_core_server
servers/linux/ubisense_local_control

replication servers/linux/ubisense_replication_sender
servers/linux/ubisense_replication_receiver

failover servers/linux/ubisense_failover_control

2. Create a service management script for the failover service only.
Create a suitable script for your particular Linux platform that will provide some
start/stop/status support for the failover service. This service runs as a daemon, and so most
standard techniques should be applicable. A common script is provided in Example Linux
init.d script for ubisense_failover_control.
For Red Hat® Linux, and other Linux platforms using systemd, see Example Linux systemd
scripts for ubisense_failover_control for information on configuring support for the failover
service.

3. Ensure that the service management script is run on machine restart.
Using a suitable method for your Linux platform, ensure that the failover service is started
on machine restart. On most platforms, it should also be possible to restart the failover
service on failure.

4. Configure Failover using platform.conf.
Referring to the table below and using the examples in Failover configuration example,
configure the failover service.
Ensure that the two machines have identical configurations apart from IP addresses where
the local IP on one machine is the remote IP on the other, and vice versa.

15

Installing Failover on Linux

The following are the failover service parameters:

Parameter
name Description Default value

ufc_local_ip The IP address of the network interface to use on the local
machine

0.0.0.0

ufc_remote_
ip

The IP address to send to on the remote machine 0.0.0.0

ufc_port The port to bind to on the local machine (and to send to on the
remote machine)

27001

ufc_timeout The time in seconds before the remote machine is set to have
status Timeout

10

ufc_reboot_
on_error

Reboot the local machine if an error is encountered when
attempting to control the other Ubisense services on the local
machine

0

ufc_core Start the Ubisense core server on the local machine when in the
active state

1

ufc_
replication

Start the replication sender on the local machine when in the
active state, and the replication receiver on the local machine
when in the standby state. If the machines are using some kind
of shared storage mechanism in order to ensure that they refer
to the same data, then replication is not required and this can
be set to 0.

1

ufc_test_
mode

Do not actually start or stop any services, but just print out
which services would be started or stopped at any time

1

ufc_bin Location of the other Ubisense service executables on the local
machine

/home/platform/bin

The following are other parameters relevant to failover operation.

16

Installing Failover on Linux

Parameter
name Description

controller_
node_name

The name of the computing node to be used by the local controller. This provides the
mechanism for the two machines in the two machine setup to identify themselves as the
same machine, and always needs to be set when implementing failover.

replication_
directory

The path of the directory where Ubisense persistent services will write their replication
files. This only needs to be set when using Ubisense Replication, that is when the
parameter ufc_replication above is set to 1.

replication_
receiver_
address

The address of the machine to connect to when sending replication data. This only needs
to be set when using Ubisense Replication services, that is when the parameter ufc_
replication above is set to 1.

sensor_use_
log_as_trace_
dest

Used when running the platform in unicastmode to ensure that sensor trace messages
are correctly routed on failover. To implement this parameter:

1. Run all the logging services on one machine (see Logging for further information
on configuring logging servers).

2. Set the value of sensor_use_log_as_trace_dest to 1.

3. Run the Ubisense / Platform / Unicast monitor proxy service on the same machine
as the logging services.

The effect of setting this parameter is:

l The site level logging server will set the global configuration parameter unicast_
monitor_addr to be the same as its host machine's platform_interface if this is
defined

l Sensors will send trace messages to the IP endpoint A : P, where A is the IP
address component of Location_Cell / Logging_Server / Address_IPv4 for the
sensor, and P is the value of the global configuration parameter unicast_monitor_
port

5. Start Failover and ensure the configuration is working correctly.
After the configuration has been set up appropriately, the failover service can be started.

Installing on 2N Machines
When installing Failover over multiple pairs of machines, each pair of machines should be
configured as described above with the following exceptions:

17

../../../../../../Content/UserResources/BuildandCreate/Logging/logging-configuration.htm

Installing Failover on Linux

l Only one machine pair should be configured to host the core server, so in step 4 the
parameter ufc_core should be set to zero in the platform.conf files for all the other
machine pairs

l Each machine pair needs a new controller name. For example, if there are N pairs, then
each pair could have controller_node_name set to linux_server_1, … , linux_server_N

18

Example Linux init.d script for ubisense_failover_control

Example Linux init.d script for ubisense_
failover_control
This script is a commonly-used init script template, converted for running the Ubisense failover
control service. It assumes the existence of a pseudo-user platform, which will run the Ubisense
platform. It also needs to be configured for your platform, by setting PLATFORM_USER,
UBISENSE_FAILOVER, and UCONFIG appropriately.

19

Example Linux init.d script for ubisense_failover_control

#!/bin/bash
Init file for Ubisense failover control server
chkconfig: 345 98 02
description: Ubisense failover control for linux
processname: ubisense_failover_control
config: /etc/ubisense.conf

source function library

if [-e /etc/rc.d/init.d/functions]
then

. /etc/rc.d/init.d/functions
else
steal status() from /etc/rc.d/init.d/functions on a RH box
status() {

local base=${1##*/}
local pid

Test syntax.
if ["$#" = 0] ; then

echo $"Usage: status {program}"
return 1

fi

First try "pidof"
pid=`pidof -o $$ -o $PPID -o %PPID -x $1 || \

pidof -o $$ -o $PPID -o %PPID -x ${base}`
if [-n "$pid"]; then

echo $"${base} (pid $pid) is running..."
return 0

fi

Next try "/var/run/*.pid" files
if [-f /var/run/${base}.pid] ; then

read pid < /var/run/${base}.pid
if [-n "$pid"]; then

echo $"${base} dead but pid file exists"
return 1

fi
fi
See if /var/lock/subsys/${base} exists
if [-f /var/lock/subsys/${base}]; then

echo $"${base} dead but subsys locked"
return 2

fi
echo $"${base} is stopped"
return 3

}
fi

pull in sysconfig settings. NB this is configuring sysconfig, not Ubisense
[-f /etc/ubisense.conf] && . /etc/ubisense.conf

20

Example Linux init.d script for ubisense_failover_control

local configuration – change to reflect pseudo user and location of executable
PLATFORM_USER=${PLATFORM_USER:-platform}
UBISENSE_FAILOVER=/home/platform/bin/ubisense_failover_control
export UCONFIG=/etc/ubisense/platform.conf

RETVAL=0
prog="ubisense"

start()
{

echo -n $"Starting UBISENSE_FAILOVER:"
if [-e /etc/rc.d/init.d/functions]
then

daemon --check UBISENSE_FAILOVER --user=platform ${UBISENSE_FAILOVER}
else

startproc -u platform ${UBISENSE_FAILOVER}
fi
touch /var/lock/subsys/UBISENSE_FAILOVER

echo
}

stop()
{

echo -n $"Stopping UBISENSE_FAILOVER:"
if [-e /etc/rc.d/init.d/functions]

then
killproc UBISENSE_FAILOVER

else
killproc ${UBISENSE_FAILOVER}

fi
rm -f /var/lock/subsys/UBISENSE_FAILOVER

echo
}

case "$1" in
start)

start
;;

stop)
stop
;;

restart)
stop

start
;;

status)
status UBISENSE_FAILOVER

;;
*)

echo $"Usage: $0 {start|stop|restart|status}"

21

Example Linux init.d script for ubisense_failover_control

RETVAL=1
esac
exit $RETVAL

22

Example Linux systemd scripts for ubisense_failover_control

Example Linux systemd scripts for ubisense_
failover_control
The following example illustrates the use of sysemd scripts for failover on a Red Hat® Linux
machine.

The instructions assume the failover executable (ubisense_failover_control) is in /home/platform/bin/i586_
linux. If this is not the case, the service file (ubisense_failover.service) will have to be
updated to reflect the location of the executable.

1. Add a target file ubisense_service.target in /etc/systemd/system containing the following:

[Unit]
Description=ubisense_service Target
Requires=multi-user.target
After=multi-user.target
AllowIsolate=yes

2. Run the following commands:

systemctl list-units --type service
systemctl daemon-reload
systemctl enable ubisense_service.target
systemctl isolate ubisense_service.target
ln -sf /etc/systemd/system/ubisense_service.target
/etc/systemd/system/default.target.wants/

3. Reboot the machine.

4. Check the status of the target using the command below to make sure the target is active
and running:

systemctl list-units --type target

5. Add a service file ubisense_failover.service in /etc/systemd/system containing the
following:

23

Example Linux systemd scripts for ubisense_failover_control

[Unit]
Description=Daemon for ubisense_failover_service
After=multi-user.target

[Service]
Type=forking
ExecStart=/home/platform/bin/i586_linux/ubisense_failover_control

[Install]
WantedBy=ubisense_service.target

6. Run the following commands:

systemctl daemon-reload
systemctl enable ubisense_failover.service

7. Reboot the machine.

8. To list the status of the services run the following command:

systemctl list-units --type service

24

Failover configuration example

Failover configuration example
In this example two Linux machines run an entire dataset with failover in a two machine setup.

l The IP addresses of the machines are 10.42.1.40 and 10.42.1.106.

l The machines both have the following Ubisense executables installed in their default
location (/home/platform/bin): ubisense_failover_control, ubisense_core_server, ubisense_
local_control, ubisense_replication_sender, and ubisense_replication_receiver

l The ubisense_failover_control service is set up to run via a standard init.d script.

l The machines are both configured using the /etc/ubisense/platform.conf file, with
contents as below:

10.42.1.40 platform.conf file

controller_node_name: linux_server
replication_directory: /home/platform/replication
replication_receiver_address: 10.42.1.106
ufc_local_ip: 10.42.1.40
ufc_remote_ip: 10.42.1.106
ufc_test_mode: 0

10.42.1.106 platform.conf file

controller_node_name: linux_server
replication_directory: /home/platform/replication
replication_receiver_address: 10.42.1.40
ufc_local_ip: 10.42.1.106
ufc_remote_ip: 10.42.1.40
ufc_test_mode: 0

What Happens when the Example Runs
When the machines both start up (or both have the failover service started), the following
sequence of behavior occurs:

25

Failover configuration example

10.42.1.40 10.42.1.106

In state Ready (remote = Waiting) In state Ready (remote = Waiting)

In state Ready (remote = Ready) In state Ready (remote = Ready)

Because this machine has the lower IP address

Start ubisense_core_server,
ubisense_local_control,
ubisense_replication_sender

In state Running (remote = Ready) In state Ready (remote = Running)

Start ubisense_replication_receiver

In state Running (remote = Ready) In state Ready (remote = Running)

This is the stable state with 10.42.1.40 active and 10.42.1.106 in standby, and, because replication
is enabled, the entire dataset for 10.42.1.40 is replicated in the dataset directory for 10.42.1.106.

Looking at the dataset directories on each machine, 10.42.1.40 contains the file ufc_running, and
10.42.1.106 contains the file ufc_ready.

Manually Switching between Active and Standby
Now suppose we touch the file ufc_stop in the dataset directory on 10.42.1.40. We get this
sequence of events and actions:

10.42.1.40 10.42.1.106

In state Running (remote = Ready) In state Ready (remote = Running)

In state Ready (remote = Ready) In state Ready (remote = Ready)

Stop ubisense_core_server, ubisense_local_control,
ubisense_replication_sender

In state Stopped (remote = Ready) In state Ready (remote = Stopped)

Stop ubisense_replication_receiver
Start ubisense_core_server, ubisense_local_control,
ubisense_replication_sender

In state Stopped (remote = Running) In state Running (remote = Stopped)

26

Failover configuration example

The dataset is now running on 10.42.1.106. If we now remove the ufc_stop file on 10.42.1.40, the
failover service will change state to Ready, and start ubisense_replication_receiver, which was the
original stable state, but with the machines reversed. So by using the ufc_stop file, we can
instigate an immediate switchover between the two machines.

Failing over when Active Goes Down
If the Running machine now is powered down, the standby machine will detect that remote =
Timeout, and take over as the active machine. Suppose 10.42.1.40 is the active machine, and it
fails, then we get this sequence of actions:

10.42.1.40 10.42.1.106

In state Running (remote = Ready) In state Ready (remote = Running)

MACHINE FAILS

In state Ready (remote = Running)

After ufc_timeout seconds

In state Ready (remote = Timeout)

Stop ubisense_replication_receiver
Start ubisense_core_server, ubisense_local_control,
ubisense_replication_sender

In state Stopped (remote = Running) In state Running (remote = Timeout)

Bringing a Single Machine Down for Maintenance or OS Patching
As part of a standard system administration maintenance process, machines will be periodically
upgraded to new OS versions, be assigned new hardware, or otherwise maintained. This normally
requires the machine concerned to be taken out of service. In these cases, as long as a single
machine in the pair is taken out of service at a time, failover will ensure that the application will
continue to run on the other machine.

The most graceful way of achieving this is to use the ufc_stop request, as above, to request that
the machine communicate its stopped status to its partner. This will avoid a wait of ufc_timeout
seconds before the standby machine takes over, and prevent the standby machine from logging
warnings.

27

Failover configuration example

Hot Backup: Taking Scheduled Dataset Backups while the System
is Live
Of course, failover of this kind is not a protection against disasters that take out an entire
machine room, or user errors that delete important parts of a dataset. To mitigate these problems
it is still necessary to take frequent backups.

The easiest guaranteed-correct way to do this is to ensure that the dataset files are not being
written during the backup. In a two machine setup that includes replication this is easy to do by
briefly stopping the replication receiver on the standby machine, copying the dataset backup,
and starting the replication receiver again.

On Linux platforms this can be done using this procedure:

1. Change to the dataset directory.

2. If there is a file ufc_ready, indicating that the machine is in standby state, then

a. Create the file ufc_stop, to request that the machine transition to state Stopped

b. Wait for the file ufc_stopped to appear, indicating that the machine is Stopped

c. Create the backup by copying the contents of the dataset directory to a file

d. Remove the file ufc_stop.

3. Finally, copy the backup file to some suitable remote location.

As a Linux shell script, this looks like:

cd /home/platform/dataset
if [-f ufc_ready] ; then

echo "stopping standby services"
touch ufc_stop
while [! -f ufc_stopped] ; do

echo "waiting to stop"
sleep 1

done
echo "backing up dataset"
tar czf ../backup.tgz .
echo "starting standby services"
rm ufc_stop
echo "moving backup to a remote location"
Move the file ../backup.tgz to a remote location

fi

28

Failover configuration example

This script can be installed on both machines and run via a cron job at an appropriate interval. On
the active machine the script will do nothing, and on the standby machine, the script will briefly
stop failover while creating a backup, and then move the backup to some shared remote storage.

29

	Ubisense Failover
	The Two Machine Setup
	Extending the Setup to 2N Machines
	The reliable networking assumption, errors and precautions
	Network isolation
	Network partitioning
	Precautions

	Implementation: the binary exclusion protocol and state machine
	Using the ubisense_failover_control service
	Failover Parameters
	Platforms
	Logging
	Status reporting and control files

	Installing Failover
	Installing Failover version 3 with earlier versions of the Ubisense platform

	Installing Failover on Windows
	Installing on 2N Machines
	Restarting the Ubisense Application Updater

	Installing Failover on Linux
	Installing on 2N Machines

	Example Linux init.d script for ubisense_failover_control
	Example Linux systemd scripts for ubisense_failover_control
	Failover configuration example
	What Happens when the Example Runs
	Manually Switching between Active and Standby
	Failing over when Active Goes Down
	Bringing a Single Machine Down for Maintenance or OS Patching
	Hot Backup: Taking Scheduled Dataset Backups while the System is Live

